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Preface

More cynically, one could also well ask “Why has medicine not adopted frequen-
tist inference, even though everyone presents P-values and hypothesis tests?”
My answer is: Because frequentist inference, like Bayesian inference, is not
taught. Instead everyone gets taught a misleading pseudo-frequentism: a set of
rituals and misinterpretations caricaturing frequentist inference, leading to all
kinds of misunderstandings. – Sander Greenland

We use statistics to learn from data with uncertainty. Traditional introductory
textbooks in biostatistics implicitly or explicitly train students and researchers
to “discover by p-value” using hypothesis tests (Chapter 6). Over the course of
many chapters, the student learns to use a look-up table or flowchart to choose
the correct “test” for the data at hand, compute a test statistic for their data,
compute a p-value based on the test statistic, and compare the p-value to 0.05.
Textbooks typically give very little guidance about what can be concluded if
p < 0.05 or if p > 0.05, but many researchers conclude, incorrectly, they have
“discovered” an effect if p < 0.05 but found “no effect” if p > 0.05.

This book is an introduction to the statistical analysis of data from biological
experiments with a focus on the estimation of treatment effects and measures
of the uncertainty of theses estimates. Instead of a flowchart of “which statisti-
cal test”, this book emphasizes a regression modeling approach using linear
models and extensions of linear models.

“What what? In my previous class I learned that regression was for data with
a continuous independent variable and that t-tests and ANOVA were for data
with categorical independent variables.” No! This misconception has roots in
the history of regression vs. ANOVA and is reinforced by how introductory
biostatistics textbooks, and their instructors, choose to teach statistics. In this
class, you were probably taught to follow a flowchart strategy – something like

Compared to the flowchart stratgy, the advantages of the regression modeling
strategy include

1. A unified aproach in place of a collection of seemingly unrelated tests. The
unifed approach is the regression model.

11
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Figure 1: A small flow chart demo of the flowchart strategy of statistical analysis.
This chart covers a very small subset of potential paths that could be built from
an introductory biostatistics textbook.
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It has long been appreciated that classical regression, t-tests, ANOVA, and other
methods are all variations of the equation for a line Y = mX + b using slightly
different notation

Y = β0 + β1X + ε (1)

Chapter 1 explains the meaning of this notation but the point to make here is
that because all regression models are variations of this equation, a modeling
strategy of learning or doing statistics is more coherent than a flowchart strat-
egy. Generalizations of this basic equation include general linear models, linear
mixed models, generalized linear models, generalized additive models, causal
graphical models, multivariate models, and machine learning. This book is not
a comprehensive source for any of these methods but an introduction to the
common foundations of all these methods.

2. Estimates of effects and uncertainty are, ultimately, far more useful than
p-values. For example, to build useful models on the effects of an increas-
ingly acidified ocean on coral growth, we want to estimate the direction
and magnitude of the effects at different levels of acidification and how
these estimates change under different conditions. We can compare the
magnitude to a prediction of the magnitude from a mechanistic model of
growth. We can use a magnitude and uncertainty to make predictions
about the future of coral reefs, under different scenarios of ocean acidi-
fication. We can use the estimated effects and uncertainty to model the
consequences of the effects of acidification on coral growth on fish produc-
tion or carbon cycling.

By contrast, researchers learn little from a hypothesis test – that is, comparing
p to 0.05. A p-value is a measure of compatibility between the data and the null
hypothesis and, consequently, a pretty good – but imperfect – tool to dampen
the frequency that we are fooled by randomness. Importantly, a p-value is
not a measure of the size of an effect. At most, a small p-value gives a
researcher some confidence in the existence and direction of an effect. But if we
are investigating the effects of acidified ocean water on coral growth, it would
be absurd to conclude from a p-value that pH does or does not affect growth.
pH affects everything about cell biology.

p-values are neither necessary nor sufficient for good data analysis. Properly
understood, a p-value is a useful tool in the data analysis toolkit. As stated
above, the proper use of p-values dampens the frequency that we are fooled
by randomness. Importantly, the estimation of effects and uncertainty and the
computation of a p-value are not alternatives. Indeed, the p-value returned by
many hypothesis tests are computed from the regression model used to estimate
the effects. Throughout this text, statistical models are used to compute a p-
value in addition to the estimates of effects and their uncertainty.
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NHST Blues – The “discovery by p-value” strategy, or Null-Hypothesis Sig-
nificance Testing (NHST), has been criticized by statisticians for many, many
decades. Nevertheless, introductory biostatistics textbooks written by both bi-
ologists and statisticians continue to organize textbooks around a collection
of hypothesis tests, with much less emphasis on estimation and uncertainty.
The NHST strategy of learning or doing statistics is easy in that it requires
little understanding of the statistical model underneath the tests and its as-
sumptions, limitations, and behavior. The NHST strategy in combination with
point-and-click software enables “mindless statistics”1 and encourages the belief
that statistics is a tool like a word processor is a tool, afterall, a rigorous analysis
of one’s data requires little more than getting p-values and creating bar plots.
Indeed, many PhD programs in the biosciences require no statistics coursework
and the only training available to students is from the other graduate students
and postdocs in the lab. As a consequence, the biological sciences literature is
filled with error bars that imply data with negative values and p-values that
have little relationship to the probability of the data under the null. More im-
portantly for science, the reported statistics are often not doing for the study
what the researchers and journal editors think they are doing.

0.1 Math

0.2 R and programming

1Gegenrezer
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Chapter 1

Getting Started – R
Projects and R Markdown

A typical statistical modeling project will consist of:

1. importing data from Excel or text (.csv or .txt) files
2. cleaning data
3. initial exploratory plots
4. analysis
5. model checking
6. generating plots
7. generating tables
8. writing text to describe the project, the methods, the analysis, and the

interpretation of the results (plots and tables)

The best practice for reproducible research is to have all of these steps in a
single document and all of the files for this project in a single folder (directory),
preferably on a cloud drive. Too many research projects are not reproducible
because the data were cleaned in Excel, and then different parts of the data were
separately imported into a GUI statistics software for analysis, and then output
from the statistics software was transcribed to Excel to make a table. And other
parts of the analysis are used to create a plot in some plotting software. And
then the tables and plots are pasted into Microsoft Word to create a report.
Any change at any step in this process will require the researcher to remember
all the downstream parts that are dependent on the change and to re-do an
analysis, or a table, or a plot, etc. etc.

R studio encourages best practices by creating a project folder that contains
all project documents and implementing a version of markdown called R Mark-
down. An R Markdown document can explicitly link all parts of the workflow

17



18CHAPTER 1. GETTING STARTED – R PROJECTS AND R MARKDOWN

so that changes in earlier steps automatically flow into the later steps. At the
completion of a project, a researcher can choose “run all” from the menu and
the data are read, cleaned, analyzed, ploted, tabled, and put into a report with
the text.

1.1 R vs R Studio

R is a programming language. It runs under the hood. You never see it. To
use R, you need another piece of software that provides a user interface.
The software we will use for this is R Studio. R Studio is a slick (very slick)
graphical user interface (GUI) for developing R projects.

1.2 Download and install R and R studio

Download R for your OS
Download R Studio Desktop
If you need help installing R and R studio, here is Andy Field’s Installing R
and RStudio video tutorial)

1.3 Install R Markdown

In this text, we will write code to analyze data using R Markdown. R markdown
is a version of Markdown. Markdown is tool for creating a document containing
text (like microsoft Word), images, tables, and code that can be output to the
three modern output formats: html (web pages), pdf (reports and documents),
and microsoft word (okay, this isn’t modern but it is widely used).
Directions for installing R Markdown
R Markdown can output pdf files. The mechanism for this is to first create a
LaTeX (“la-tek”) file. LaTeX is an amazing tool for creating professional pdf
documents. You do not need PDF output for this text, but I encourage you to
download and install the tinytex distribution, which was created especially for
R Markdown in R Studio.
The tinytex distribution is here.

1.4 Importing Packages

The R scripts you write will include functions in packages that are not included
in Base R. These packages need to be downloaded from an internet server to

https://cran.r-project.org
https://www.rstudio.com/products/rstudio/download/
https://www.youtube.com/watch?v=ZvPFKfNHBNQ
https://www.youtube.com/watch?v=ZvPFKfNHBNQ
https://bookdown.org/yihui/rmarkdown/installation.html#installation
https://yihui.org/tinytex/
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your computer. You only need to do this once (although you have to redo it
each time you update R). But, each time you start a new R session, you will
need to load a package using the library() function. Now is a good time to
import packages that we will use
Open R Studio and choose the menu item “Tools” > “Install Packages”. In
the “packages” input box, insert the names of packages to install the package.
The names can be separated by spaces or commas, for example “data.table,
emmeans, ggplot2”. Make sure that “install dependencies” is clicked before you
click “Install”. Packages that we will use in this book are

1. Import and analysis packages

• devtools – we use this to install packages that are not on CRAN
• here – we use to read from and write to the correct folder
• janitor – we use the function clean_names from this package
• readxl – elegant importing from microsoft Excel spreadsheets
• data.table - improves functionality of data frames

2. analysis packages

• nlme – we use this for gls models
• lme4 – we use this for linear mixed models
• lmerTest – we use this for inference with linear mixed models
• glmmTMB – we use this for generalized linear models
• MASS – we will use glm.nb from this package
• afex – we use this for classic ANOVA
• emmeans – we use this to compute modeled means and contrasts

3. graphing packages

• ggplot2 – we use this for plotting
• ggsci – we use this for the color palettes
• ggpubr – we use this to make ggplots a bit easier
• ggforce – we use this for improved jitter plots
• dabestr – we use this to make several plot types
• cowplot – we use this to combine plots
• ggpubfigs – we use this for the color palettes

ggpubfigs is new and has not been uploaded to the R CRAN library. To install
ggpubfigs, copy and paste this into the console:
devtools::install_github("JLSteenwyk/ggpubfigs")

Once these are installed, you don’t need to do this again although there will
be additional packages that you might install. You simply need to use the
library() function at the start of a markdown script.
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1.5 Create an R Studio Project for this textbook

1. Create a project folder within the Documents folder (Mac OS) or My
Documents folder (Windows OS). All files associated with this book will
reside inside this folder. The name of the project folder should be some-
thing meaningful, such as “Applied_Biostatics” or the name of your class
(for students in my Applied Biostatics class, this folder could be named
“BIO_413”).

2. Within the project folder, create new folders named

1. “Rmd” – this is where your R markdown files are stored
2. “R” – this is where additional R script files are stored
3. “data” – this is where data that we download from public archives

are stored
4. “output” – this is where you will store fake data generated in this

class
5. “images” – this is where image files are stored

3. Open R Studio and click the menu item File > New Project…
4. Choose “Existing Directory” and navigate to your project folder
5. Choose “Create Project”
6. Check that a “.Rproj” file is in your project folder

1.5.1 Create an R Markdown file for this Chapter

1. The top-left icon in R Studio is a little plus sign within a green circle.
Click this and choose “R Markdown” from the pull-down menu.

2. Give the file a meaningful title like “Chapter 1 – Organization”
3. Delete all text below the first code chunk, starting with the header “##

R Markdown”

1.5.1.1 Modify the yaml header

Replace “output: html_document” in the yaml header with the following in
order to creat a table of content (toc) on the left side of the page and to enable
code folding

output:
html_document:
toc: true
toc_float: true
code_folding: hide
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1.5.1.2 Modify the “setup” chunk

The setup chunk should look something like this

knitr::opts_chunk$set(echo = TRUE)

# wrangling packages
library(here)
library(janitor)
library(readxl)
library(data.table)

# analysis packages
library(MASS) # negative binomial and some other functions
library(nlme) # gls and some lmm

# graphing packages
library(ggsci) # color palettes
library(ggpubr) # publication quality plots
library(ggforce) # better jitter
library(cowplot) # combine plots
library(ggpubfigs) # color palettes
# ggpubfigs is not in CRAN. To install run the next line.
# devtools::install_github("JLSteenwyk/ggpubfigs")

# Okabe & Ito palette
ito_seven <- friendly_pal("ito_seven") # ggpubfigs
pal_okabe_ito <- ito_seven[c(6,5,3,7,1,2,4)] # order of Wilke

here <- here::here
data_path <- "data"

1.5.2 Create a “fake-data” chunk

4. Let’s play around with an R Markdown file. Create a new chunk and label
it “fake-data”. Insert the following R script and then click the chunk’s run
button

set.seed(4)
n <- 10
fake_data <- data.table(

treatment = rep(c("cn", "tr"), each = n),
neutrophil_count_exp1 = rnegbin(n*2,

mu = rep(c(10, 15), each = n),
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theta = 1),
neutrophil_count_exp2 = rnegbin(n*2,

mu = rep(c(10, 20), each = n),
theta = 1)

)
# View(fake_data)

This chunk creates fake neutrophil counts in two different experiments. The
comment (#) sign before View(fake_data) “comments out” the line of code,
so it is not run. View the data by highlighting View(fake_data) and choosing
“Run selected line(s)” from the Run menu.

1.5.3 Create a “plot” chunk

5. Create a new chunk and label it “plot”. Insert the following R script and
then click the chunk’s run button

gg_1 <- ggstripchart(data = fake_data,
x = "treatment",
y = "neutrophil_count_exp1",
color = "treatment",
palette = "jco",
add = "mean_se",
legend = "none") +

ylab("Neutrophil Count (Exp. 1)") +
stat_compare_means(method = "t.test",

label.y = 50,
label = "p.format") +

NULL

gg_2<- ggstripchart(data = fake_data,
x = "treatment",
y = "neutrophil_count_exp2",
color = "treatment",
palette = "jco",
add = "mean_se",
legend = "none") +

ylab("Neutrophil Count (Exp 2)") +
stat_compare_means(method = "t.test",

label.y = 65,
label = "p.format") +

NULL

plot_grid(gg_1, gg_2, labels = "AUTO")
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Each plot shows the mean count for each group, the standard error of the mean
count, and the p-value from a t-test. This statistical analysis and plot are
typical of those found in experimental biology journals. This text will teach
alterntatives that implement better practices.

1.5.4 Knit

6. Knit to an html file
7. Knit to a pdf file, if you’ve installed tinytex (or some other LaTeX distri-

bution)
8. Knit to a word document
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Part II: An introduction to
the analysis of experimental
data with a linear model
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Chapter 2

Analyzing experimental
data with a linear model

2.1 This text is about the estimation of treat-
ment effects and the uncertainty in our esti-
mates using linear models. This, raises the
question, what is “an effect”?

This text has an unusual start – an example analysis. This example is a goal
or target; it’s what you will be working towards as you learn from this text.
The data for the analysis come from multiple experiments presented in Figure
2 in the article ASK1 inhibits browning of white adipose tissue in obesity. The
analysis is in the last part of this chapter. The second part of this chapter is
just enough biology to help you understand the biological importance of each
experiment. The first part of this chapter uses one experiment from Figure 2 to
outline what the statistical analysis of experimental data is all about. Much of
this outline will be repeated in “An introduction to linear models” chapter.

The analysis in part 3 of this chapter is a set of experiments exploring the
consequences of adispose-tissue specific deletion of the ASK1 signaling protein
on multiple, adverse effects of a high-fat diet in mice, including weight gain,
glucose intolerance, and increased liver triacylglycerol levels. Think of this as a
template for organizing your own R Markdown documents. This document is a
re-analysis of the experiments in Figure 2 in the article ASK1 inhibits browning
of white adipose tissue in obesity, including generation of the publication-ready
plots. I chose the data in Figure 2 of this paper because of the diversity of
analyses and plot types. My analyses and plots differ slightly from those of the
researchers because I implemented better practices – the stuff of this text.

27
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The goal of the experiments is to measure the effect of the adipose-specific
ASK1 deletion. To understand what I mean by “an effect”, and to understand
how we can estimate an effect by fiting a linear model to data, let’s look
more closely at the analysis for Figure 2i.

For Figure 2i, the researchers want to know if “knocking out” the ASK1 gene
in the adipose tissue cells lowers the liver triglyceride (TG) level in mice fed a
high-fat diet. That is, is yASK1adipo < yASK1F/F , where yASK1adipo is the mean
liver TG level of the knockout (Δ is the del operator and refers to a deletion
in genetics) mice and yASK1F/F is the mean liver TG level of the control mice.
The difference in the means, yASK1adipo − yASK1F/F , is the effect (of ASK1
deletion on liver TG levels).

The measured means in each group are computed from a random sample of
mice. If we only cared about the six mice in each group in this experiment,
then we would not need to fit a linear model to the data to estimate the effect,
we could simply compute each group mean and subtract the control mean from
the knockout mean. But we care more about these dozen mice because we are
trying to discover something general about ASK1 regulation of TG levels in
mice, generally (and even in mammals, and especially humans, generally). To
make this leap of inference, we use a model to claim that each sample mean
is an estimate of the respective population mean. Given this model, we can
compute the standard error of each mean and the standard error of the
difference in means. A standard error is a measure of the sampling variance
of a statistic and, therefore, a measure of the precision of the estimate. The
standard error, then, is a measure of uncertainty in the estimate. Here is how
to think about precision and uncertainty: if we were to repeat this experiment
many, many times, we would generate a long list of mean TG levels for the
control mice and a long list of mean TG levels for the knockout mice. The less
variable the means in each list, the more precise. By using a model, we do not
need to repeat this experiment many times to get a standard error.

The model we are going to fit to the Figure 2i data is

yi = β0 + β1xi + εi (2.1)
εi ∼ N(0, σ2) (2.2)

This is a model of how the Figure 2i data were generated. In this model, yi is
the liver TG level for some fictional (generated!) mouse (the i stands for the
ith fictional mouse generated) and xi is a variable that indicates the condition
of the ask1 gene in ficitional mouse i. For xi, a value of 0 is given to mice with
a functional ASK1 gene and a value of 1 is given to mice with a knocked out
gene.

β0 is the “true” mean of the TG level in mice fed a high-fat diet and with a
functional ASK1 gene. By “true”, I mean the mean that would be computed if
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we were to measure TG on an infinite number of these mice. The observed mean
of the ASK1F/F group is an estimate of β0. The sum β0 + β1 is the true mean
of the TG level in mice fed a high-fat diet but with a knocked out ASK1 gene.
This means that β1 is the true difference in the means, or the true effect. The
observed difference in means between the ASK1Δadipo and ASK1F/F groups
is an estimate of β1. This difference is the estimated effect.

Notice that the sum β0 + β1xi equals the true mean of the infinite set of normal
mice if xi = 0 and equals the true mean of the infinite set of ASK1 knockout
mice if xi = 1. εi is the error for mouse i, which is the difference between the
TG level for mouse i and the expected TG value for mouse i. The expected
value for a mouse with a normal ASK1 gene is β0. The expected value for a
mouse with a knocked out ASK1 gene is β0 + β1. The second line of the model
simply states that εi is modeled as a random sample from a normal distribution
with a mean of zero and a variance of σ2.

By fitting a model to the data we estimate the parameters β0, β1 and σ. It
is the estimation of σ that allows us to compute a measure of our uncertainty
(a standard error) of our estimates of the means (β0 and β0 + β1) and of the
difference in the means (β1).

Let’s fit this model to the Figure 2i data using R

fig_2i_m1 <- lm(liver_tg ~ treatment, data = fig_2i)

Robust inference from the model (generalizing from sample to population, in-
cluding measures of the uncertainty of our estimates) requires that our data
approximates the kind of data we’d expect from the data generating model
specified above. All rigorous analysis should use specific model checks to eval-
uate this. First, the “normality check” – we use a quantile-quantile (QQ)
plot to see if our data approximate what we’d see if we sampled from a normal
distribution. This looks okay, in the sense that the observed data points (open
circles) fall within the boundaries set by the dashed line. Inference is pretty
robust to moderate departure from normal.

set.seed(1)
qqPlot(fig_2i_m1, id=FALSE)
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Second, the “homogeneity check” – we use a spread level plot to see if there is
some pattern to the variance, for example if the spread of residuals is noticeably
bigger in one group than another, or if the spread increases with the fitted value.
This looks pretty good. Given these checks, lets move on and look at the table
of model coefficients

spreadLevelPlot(fig_2i_m1, id=FALSE)
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##
## Suggested power transformation: 1.294553

fig_2i_m1 <- lm(liver_tg ~ treatment, data = fig_2i)
fig_2i_m1_coef <- cbind(coef(summary(fig_2i_m1)),

confint(fig_2i_m1))
knitr::kable(fig_2i_m1_coef, digits = c(1, 2, 1, 3, 1, 1))

Estimate

Std. Error

t value

Pr(>|t|)

2.5 %

97.5 %

(Intercept)

61.5

4.98

12.3

0.000

50.4

72.6

treatmentASK1Δadipo

-21.6

7.05

-3.1

0.012

-37.3

-5.9

The two values in the column “Estimate” are the estimates of β0 and β1. The
top value (61.5) is the mean of the control mice (the units are µmol/g). The
mean of the knockout mice is the sum of the two values (39.9 µmol/g). And the
effect of ASK1 deletion on TG levels is simply the second value (-21.6 µmol/g).
The standard error of the effect is 7.05 µmol/g. We can use the standard error
to compute a t-value (-3.1, in the column “t value”). A t-value is a test statis-
tic. The probability (“p value”) of the significance test is 0.012. This if the
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probability of sampling a t-value as large or larger than the observed t-value, if
we were to sample from a null distribution of t-values (a distribution of sampled
t values if the true value of β1 was 0). We can also use the standard error to
compute a 95% confidence interval of the effect. The lower bound of this
interval is -37.3 µmol/g and the upper bound is -5.9 µmol/g. A confidence inter-
val is another way of communicating uncertainty, and the way advocated in this
text. In a 95% confidence interval, 95% of similarly constructed intervals (from
hypothetical sampling of six mice from the ASK1 normal population and six
mice from the ASK1 knockout population) will contain the true mean. Another
way to think about a confidence interval is, it is the range of true differences
that are compatible with the data, where compatible means “not rejected” by a
t-test (a t-test between the estimated effect and any number inside the interval
would return a p-value greater than 0.05).

Here is how we might report this result in a paper:

Mean TG level in ASK1Δadipo mice on a high-fat diet was 21.6 µmol/g less
than that in ASK1F/F mice on a high-fat diet (95% CI: -37.3, -5.9, p = 0.012).

An a plot for the paper:

fig_2i_m1_emm <- emmeans(fig_2i_m1, specs = "treatment")
fig_2i_m1_pairs <- contrast(fig_2i_m1_emm,

method = "revpairwise") %>%
summary(infer = TRUE)

fig_2i_m1_emm_dt <- summary(fig_2i_m1_emm) %>%
data.table

fig_2i_m1_pairs_dt <- data.table(fig_2i_m1_pairs)
fig_2i_m1_pairs_dt[ , p_pretty := pvalString(p.value)]
fig_2i_m1_pairs_dt[, group1 := 1]
fig_2i_m1_pairs_dt[, group2 := 2]

fig_2i_gg <- ggplot(data = fig_2i,
aes(x = treatment,

y = liver_tg,
color = treatment)) +

# points
geom_sina(alpha = 0.5) +

# plot means and CI
geom_errorbar(data = fig_2i_m1_emm_dt,

aes(y = emmean,
ymin = lower.CL,
ymax = upper.CL,
color = treatment),
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width = 0
) +

geom_point(data = fig_2i_m1_emm_dt,
aes(y = emmean,

color = treatment),
size = 3

) +

# plot p-values (y positions are adjusted by eye)
stat_pvalue_manual(fig_2i_m1_pairs_dt,

label = "p_pretty",
y.position=c(95),
tip.length = 0.01) +

# aesthetics
ylab("Liver TG (µmol per g liver)") +
scale_color_manual(values=pal_okabe_ito[5:6],

name = NULL) +
theme_pubr() +
theme(legend.position="none") +
theme(axis.title.x=element_blank()) +

NULL

fig_2i_gg
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Background physiology to
the experiments in Figure 2
of “ASK1 inhibits browning
of white adipose tissue in
obesity”

A little background on the subject of the article: white adipose tissue (WAT) is
composed of adipose (fat) cells that function as energy storage cells. The energy
is in the form of the fatty acids in the triacylglycerols, which form large lipid
drops in the cell. The stored fatty acids are released from the WAT when other
organs need energy. Mammalian brown adipose tissue (BAT) is composed of
adipose cells that burn the stored fat to generate heat. This is enabled by the
expression of the protein uncoupling receptor 1 (UCP1) in the mitochondria.
UCP1 uncouples the proton gradient across the inner mitochondrial membrane
from ATP synthesis.

In response to adverse health consequences of obesity, including metabolic syn-
drome, researchers are investigating various ways to increase BAT, or stimulate
BAT activity, or transform WAT cells into more BAT-like cells, by turning up
expression of UCP1. The regulation of UPC1 in WAT is a potential drug target
for obesity.

The researchers of the ASK1 study investigated the effects of an intracellular
signaling protein (ASK1) on the browning of white adipose tissue. Previous
research had suggested that 1) inflammation stimulates ASK1 activity and 2)
increased ASK1 acitivty inhibits UPC1 expression (Figure 2.1. The experiments
in Figure 2 of the ASK1 study follow this up and explore the question, if ASK1
is knocked out in the WAT cells, will this reverse the adverse effects of a high-fat
diet, including weight gain, glucose intolerance, and liver triacylglycerol levels?

For the experiments in Figure 2, the researchers created mice in which the ASK1

35



36CHAPTER 2. ANALYZING EXPERIMENTAL DATA WITH A LINEAR MODEL

Figure 2.1: Inflammation to obesity stimulates ASK1 activity. ASK1 activity
inhibits UCP1 expression.
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gene was inhibited from being expressed (or “knocked out”) in the white adipose
tissue cells. The ask1 treatment has two levels: “ASK1Δadipo”, which are the
adipocyte-specific ASK1 knockout (KO) mice, and “ASK1F/F”, which are the
controls. For some of the experiments, the researchers split the mice in each
ask1 treatment level and assigned these to either a Chow or a High Fat Diet
(HFD). This experimental design is two-crossed factors, each with two levels,
which I call a 2 × 2 factorial design in this text.

• Some of the plots are coded directly in this document. Others use func-
tions from the chapter “Plotting functions”. But, to use these in an R
Markdown document, these functions have to be saved in a “R Script”
file. This script file then needs to be read at the start of the R Markdown
document. I named the script file “ggplotsci.R” and placed it in a folder
called “R” at the level of the project (directly within the project folder).

• This example was written with the Bookdown style sheet (because its part
of this book), which doesn’t have one nice features of creating R Markdown
documents for reports and manuscripts – code folding. In an R Markdown
document with code folding, a user can toggle between showing and hiding
code. The html output with code folding is here.
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Analyses for Figure 2 of
“ASK1 inhibits browning of
white adipose tissue in
obesity”

2.2 Setup

Some plots in this document require the file “ggplotsci.R” within the “R” folder,
within the project folder.

knitr::opts_chunk$set(echo = TRUE, warning=FALSE, message=FALSE)

# wrangling packages
library(here)
library(janitor)
library(readxl)
library(data.table)
library(stringr)

# analysis packages
library(emmeans)
library(car) # qqplot, spreadlevel
library(DHARMa)

# graphing packages
library(ggsci)
library(ggpubr)
library(ggforce)
library(cowplot)
library(lazyWeave) #pvalstring

39
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here <- here::here
data_path <- "data"

ggplotsci_path <- here("R", "ggplotsci.R")
source(ggplotsci_path)

2.3 Data source

Data source: ASK1 inhibits browning of white adipose tissue in obesity

This chunk assigns the path to the Excel data file for all panels of Figure 2.
The data for each panel are in a single sheet in the Excel file named “Source
Date_Figure 2”.

data_folder <- "ASK1 inhibits browning of white adipose tissue in obesity"
file_name <- "41467_2020_15483_MOESM4_ESM.xlsx"
file_path <- here(data_path, data_folder, file_name)

fig_2_sheet <- "Source Date_Figure 2"

2.4 control the color palette

fig_2_palette <- pal_okabe_ito[5:6]
# fig_2_palette <- pal_okabe_ito
#fig_2_palette <- pal_nature_mod

2.5 useful functions

A function to import longitudinal data from Fig 2

# function to read in parts of 2b
import_fig_2_part <- function(range_2){
fig_2_part <- read_excel(file_path,

sheet = fig_2_sheet,
range = range_2,
col_names = TRUE) %>%

data.table()
group <- colnames(fig_2_part)[1]

https://www.nature.com/articles/s41467-020-15483-7
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setnames(fig_2_part, old = group, new = "treatment")
fig_2_part[, treatment := as.character(treatment)] # this was read as logical
fig_2_part[, treatment := group] # assign treatment group
fig_2_part[, mouse_id := paste(group, .I)]
return(fig_2_part)

}

# script to compute various area under the curves (AUC) using trapezoidal method
# le Floch's "incremental" auc substracts the baseline value from all points.
# This can create some elements with negative area if post-baseline values are less
# than baseline value.
# Some researchers "correct" this by setting any(y - ybar < 0 to zero. Don't do this.

auc <- function(x, y, method="auc", average = FALSE){
# method = "auc", auc computed using trapezoidal calc
# method = "iauc" is an incremental AUC of Le Floch
# method = "pos_iauc" is a "positive" incremental AUC of Le Floch but not Wolever
# method = "post_0_auc" is AUC of post-time0 values
# if average then divide area by duration
if(method=="iauc"){y <- y - y[1]}
if(method=="pos_iauc"){y[y < 0] <- 0}
if(method=="post_0_auc"){
x <- x[-1]
y <- y[-1]

}
n <- length(x)
area <- 0
for(i in 2:n){
area <- area + (x[i] - x[i-1])*(y[i-1] + y[i])

}
value <- area/2
if(average == TRUE){

value <- value/(x[length(x)] - x[1])
}
return(value)

}
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2.6 figure 2b – effect of ASK1 deletion on growth
(body weight)

2.6.1 figure 2b – import

range_list <- c("A21:N41", "A43:N56", "A58:N110", "A112:N170")
fig_2b_wide <- data.table(NULL)
for(range_i in range_list){
part <- import_fig_2_part(range_i)
fig_2b_wide <- rbind(fig_2b_wide,

part)
}

fig_2b <- melt(fig_2b_wide,
id.vars = c("treatment", "mouse_id"),
variable.name = "week",
value.name = "body_weight")

fig_2b[, week := as.numeric(as.character(week))]
fig_2b[, c("ask1", "diet") := tstrsplit(treatment, " ", fixed=TRUE)]
fig_2b[, week_f := factor(week)]

2.6.2 figure 2b – exploratory plots

qplot(x = week,
y = body_weight,
data = fig_2b,
color = treatment) +

facet_grid(ask1~diet)
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1. no obvious outliers
2. reduced growth rate at bigger size

qplot(x = week,
y = body_weight,
data = fig_2b,
color = treatment) +

geom_smooth()
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1. loess smooth. Growth in ASK1F/F + HFD clearly greater than other
three treatment combinations.

2.7 Figure 2c – Effect of ASK1 deletion on final
body weight

2.7.1 Figure 2c – import

range_2c <- "A173:BD176"
y_cols <- c("ASK1F/F chow", "ASK1Δadipo chow", "ASK1F/F HFD", "ASK1Δadipo HFD")
fig_2c_import <- read_excel(file_path,

sheet = fig_2_sheet,
range = range_2c,
col_names = FALSE) %>%

transpose(make.names=1) %>%
data.table() %>%
melt(measure.vars = y_cols,

variable.name = "treatment",
value.name = "body_weight_gain") %>%

na.omit()
fig_2c_import[, mouse_id := paste(treatment, .I, sep = "_"),

by = treatment]
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2.7.2 Figure 2c – check own computation of weight change
v imported value

Note that three cases are missing from fig_2c import that are in fig_2b

# change colnames to char
fig_2c <- copy(fig_2b_wide)
weeks <- unique(fig_2b[, week])
setnames(fig_2c,

old = colnames(fig_2c),
new = c("treatment", paste0("week_", weeks), "mouse_id"))

fig_2c[, weight_gain := week_12 - week_0]
fig_2c <- fig_2c[, .SD, .SDcols = c("treatment",

"week_0",
"week_12",
"weight_gain")]

fig_2c[, mouse_id := paste(treatment, .I, sep = "_"),
by = treatment]

fig_2c[, c("ask1", "diet") := tstrsplit(treatment, " ", fixed=TRUE)]

fig_2c_check <- merge(fig_2c,
fig_2c_import,
by = c("mouse_id"),
all = TRUE)

#View(fig_2c_check)

2.7.3 Figure 2c – exploratory plots

qplot(x = treatment,
y = weight_gain,
data = fig_2c)
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• no obvious outliers
• variance increases with mean, as expected from growth, suggests a multi-

plicative model. But start with simple lm.

2.7.4 Figure 2c – fit the model: m1 (lm)

fig_2c_m1 <- lm(weight_gain ~ week_0 + ask1*diet, data = fig_2c)

2.7.5 Figure 2c – check the model: m1

# check normality assumption
set.seed(1)
qqPlot(fig_2c_m1, id=FALSE)
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##
## Suggested power transformation: 0.06419448

• QQ indicates possible right skew but especially left side is squashed toward
mean



48CHAPTER 2. ANALYZING EXPERIMENTAL DATA WITH A LINEAR MODEL

• spread-level indicates variance increases with mean

For p-value, this may not be too severe but for intervals, best to account for
this. Try gamma with log link (which makes biological sense for growth)

2.7.6 Figure 2c – fit the model: m2 (gamma glm)

fig_2c_m2 <- glm(weight_gain ~ week_0 + ask1*diet,
family = Gamma(link = "log"),
data = fig_2c)

2.7.7 Figure 2c – check the model, m2

set.seed(1)
fig_2c_m2_sim <- simulateResiduals(fig_2c_m2, n=250)
plot(fig_2c_m2_sim)
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• well behaved QQ and spread-level
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2.7.8 Figure 2c – inference from the model

coef_table <- cbind(coef(summary(fig_2c_m2)),
exp(confint(fig_2c_m2))) %>%

data.table(keep.rownames = TRUE)
coef_table[, Estimate:=exp(Estimate)]
knitr::kable(coef_table, digits = c(0,2,2,2,4,2,2))

rn

Estimate

Std. Error

t value

Pr(>|t|)

2.5 %

97.5 %

(Intercept)

10.87

0.35

6.83

0.0000

5.53

21.50

week_0

0.99

0.01

-0.84

0.3997

0.96

1.02

ask1ASK1Δadipo

1.03

0.11

0.24
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0.8138

0.83

1.28

dietHFD

1.56

0.08

5.45

0.0000

1.33

1.82

ask1ASK1Δadipo:dietHFD

0.79

0.13

-1.93

0.0551

0.61

1.00

fig_2c_m2_emm <- emmeans(fig_2c_m2, specs = c("diet", "ask1"),
type = "response")

fig_2c_m2_pairs <- contrast(fig_2c_m2_emm,
method = "revpairwise",
simple = "each",
combine = TRUE,
adjust = "none") %>%

summary(infer = TRUE)

fig_2c_m2_emm

## diet ask1 response SE df asymp.LCL asymp.UCL
## chow ASK1F/F 8.19 0.568 Inf 7.15 9.39
## HFD ASK1F/F 12.75 0.548 Inf 11.72 13.87
## chow ASK1Δadipo 8.41 0.721 Inf 7.11 9.95
## HFD ASK1Δadipo 10.28 0.424 Inf 9.48 11.14
##
## Confidence level used: 0.95
## Intervals are back-transformed from the log scale
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fig_2c_m2_pairs

## ask1 diet contrast ratio SE df asymp.LCL asymp.UCL
## ASK1F/F . HFD / chow 1.556 0.1263 Inf 1.328 1.825
## ASK1Δadipo . HFD / chow 1.222 0.1168 Inf 1.013 1.474
## . chow ASK1Δadipo / ASK1F/F 1.026 0.1127 Inf 0.828 1.273
## . HFD ASK1Δadipo / ASK1F/F 0.806 0.0485 Inf 0.716 0.907
## z.ratio p.value
## 5.453 <.0001
## 2.097 0.0360
## 0.236 0.8134
## -3.587 0.0003
##
## Confidence level used: 0.95
## Intervals are back-transformed from the log scale
## Tests are performed on the log scale

• within ASK1 Cn, HFD mean is 1.6X chow mean
• within ASK1 KO, HFD mean is 1.2X chow mean
• within chow, ASK1 KO mean is 1.0X ASK1 Cn mean
• within HFD, ASK1 KO mean is 0.86X ASK1 Cn mean

# same as interaction effect in coefficient table
contrast(fig_2c_m2_emm, interaction = "pairwise", by = NULL) %>%
summary(infer = TRUE)

## diet_pairwise ask1_pairwise ratio SE df asymp.LCL asymp.UCL
## chow / HFD ASK1F/F / ASK1Δadipo 0.785 0.0982 Inf 0.614 1
## z.ratio p.value
## -1.934 0.0531
##
## Confidence level used: 0.95
## Intervals are back-transformed from the log scale
## Tests are performed on the log scale

• the reduction in weight gain in the ASK1 KO mice compared to ASK1
CN is 0.785X. Notice that p > 0.05.

2.7.9 Figure 2c – plot the model
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fig_2c_m2_emm_dt <- summary(fig_2c_m2_emm) %>%
data.table

fig_2c_m2_pairs_dt <- data.table(fig_2c_m2_pairs)
fig_2c_m2_pairs_dt[ , p_pretty := pvalString(p.value)]

dodge_width <- 0.8 # separation between groups
# get x positions of brackets for p-values
# requires looking at table and mentally figuring out
# Chow is at x = 1 and HFD is at x = 2
fig_2c_m2_pairs_dt[, group1 := c(1-dodge_width/4,

1+dodge_width/4,
1-dodge_width/4,
2-dodge_width/4)]

fig_2c_m2_pairs_dt[, group2 := c(2-dodge_width/4,
2+dodge_width/4,
1+dodge_width/4,
2+dodge_width/4)]

pd <- position_dodge(width = dodge_width)
fig_2c_gg <- ggplot(data = fig_2c,

aes(x = diet,
y = weight_gain,
color = ask1)) +

# points
geom_sina(alpha = 0.5,

position = pd) +

# plot means and CI
geom_errorbar(data = fig_2c_m2_emm_dt,

aes(y = response,
ymin = asymp.LCL,
ymax = asymp.UCL,
color = ask1),

width = 0,
position = pd

) +

geom_point(data = fig_2c_m2_emm_dt,
aes(y = response,

color = ask1),
size = 3,
position = pd

) +
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# plot p-values (y positions are adjusted by eye)
stat_pvalue_manual(fig_2c_m2_pairs_dt,

label = "p_pretty",
y.position=c(28.5, 31, 26, 26),
tip.length = 0.01) +

# aesthetics
ylab("Weight Gain") +
scale_color_manual(values=fig_2_palette,

name = NULL) +
theme_pubr() +
theme(legend.position="top") +
theme(axis.title.x=element_blank()) +

NULL

fig_2c_gg
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2.7.10 Figure 2c – report

Results could be reported using either:

(This is inconsistent with plot, if using this, the plot should reverse what factor
is on the x-axis and what factor is the grouping (color) variable) Mean weight
gain in ASK1F/F mice on HFD was 1.56 (95% CI: 1.33, 1.82, p < 0.0001) times
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that of ASK1F/F mice on chow while mean weight gain in ASK1Δadipo mice on
HFD was only 1.22 (95% CI: 1.01, 1.47, p = 0.036) times that of ASK1Δadipo
mice on chow. This reduction in weight gain in ASK1Δadipo mice compared
to ASK1F/F control mice was 0.79 times (95% CI; 0.61, 1.00, p = 0.0531).

(This is consistent with the plot in that its comparing difference in the group-
ing factor within each level of the factor on the x-axis) Mean weight gain
in ASK1Δadipo mice on chow was trivially larger (1.03 times) than that in
ASK1F/F mice on chow (95% CI: 0.83, 1.27, p = 0.81) while mean weight gain
in ASK1Δadipo mice on HFD was smaller (0.81 times) than that in ASK1F/F
control mice on HFD (95% CI: 0.72 , 0.91, p = 0.0003). This reduction in weight
gain in ASK1Δadipo mice compared to ASK1Δadipo mice is 0.79 times (95%
CI; 0.61, 1.00, p = 0.0531).

note to research team. The big difference in p-values between weight differ-
ence on chow and weight difference on HFD might lead one to believe there is
a “difference in this difference”. Using a p-value = effect strategy, this is not
supported.

2.8 Figure 2d – Effect of ASK1 KO on glucose
tolerance (whole curve)

2.8.1 Figure 2d – Import

range_list <- c("A179:H189", "A191:H199", "A201:H214", "A216:H230")
fig_2d_wide <- data.table(NULL)
for(range_i in range_list){
part <- import_fig_2_part(range_i)
fig_2d_wide <- rbind(fig_2d_wide,

part)
}
fig_2d_wide[, c("ask1", "diet") := tstrsplit(treatment, " ", fixed=TRUE)]

# melt
fig_2d <- melt(fig_2d_wide,

id.vars = c("treatment",
"ask1",
"diet",
"mouse_id"),

variable.name = "time",
value.name = "glucose")

fig_2d[, time := as.numeric(as.character(time))]
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# for plot only (not analysis!)
shift <- 2
fig_2d[treatment == "ASK1F/F chow", time_x := time - shift*1.5]
fig_2d[treatment == "ASK1Δadipo chow", time_x := time - shift*.5]
fig_2d[treatment == "ASK1F/F HFD", time_x := time + shift*.5]
fig_2d[treatment == "ASK1Δadipo HFD", time_x := time + shift*1.5]

2.8.2 Figure 2d – exploratory plots

qplot(x = time_x, y = glucose, color = treatment, data = fig_2d) +
geom_line(aes(group = mouse_id), alpha = 0.3)
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* no obvious unplausible outliers but two mice w/ high values in “F/F HFD”
* similar at time zero (initial effect is trivial)

use AUC conditional on time 0 glucose

qplot(x = time,
y = glucose,
data = fig_2d,
color = treatment) +

geom_smooth()



56CHAPTER 2. ANALYZING EXPERIMENTAL DATA WITH A LINEAR MODEL

10

20

30

0 25 50 75 100 125
time

gl
uc

os
e

treatment

ASK1F/F chow

ASK1F/F HFD

ASK1..adipo chow

ASK1..adipo HFD

2.8.3 Figure 2d – fit the model

2.8.4 Figure 2d – check the model

2.8.5 Figure 2d – inference

2.8.6 Figure 2d – plot the model

2.9 Figure 2e – Effect of ASK1 deletion on glu-
cose tolerance (summary measure)

The researchers did create a table to import but this analysis uses the mean post-
baseline glucose amount as the response instead of the area under the curve of
over the full 120 minutes. This mean is computed as the post-baseline area
under the curve divided by the duration of time of the post-baseline measures
(105 minutes). This analysis will use fig_2d_wide since there is only one a
single Y variable per mouse.
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2.9.1 Figure 2e – message the data

# AUC of post-baseline values
# do this after melt as we don't need this in long format)
fig_2e <- fig_2d_wide
fig_2e[, glucose_0 := get("0")]

times <- c(0, 15, 30, 45, 60, 90, 120)
time_cols <- as.character(times)
Y <- fig_2e[, .SD, .SDcols = time_cols]
fig_2e[, glucose_mean := apply(Y, 1, auc,

x=times,
method = "post_0_auc",
average = TRUE)]

2.9.2 Figure 2e – exploratory plots

qplot(x = treatment, y = glucose_mean, data = fig_2e)
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2.9.3 Figure 2e – fit the model

fig_2e_m1 <- lm(glucose_mean ~ glucose_0 + ask1*diet, data = fig_2e)

2.9.4 Figure 2e – check the model

# check normality assumption
set.seed(1)
qqPlot(fig_2e_m1, id=FALSE)
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spreadLevelPlot(fig_2e_m1, id=FALSE)
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##
## Suggested power transformation: -0.4035073

2.9.5 Figure 2e – inference from the model

fig_2e_m1_coef <- coef(summary(fig_2e_m1))
fig_2e_m1_coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.6835026 1.2556730 6.9154169 2.460045e-08
## glucose_0 1.2194720 0.2390919 5.1004329 8.592596e-06
## ask1ASK1Δadipo -0.3488511 0.8759124 -0.3982716 6.925479e-01
## dietHFD 4.2782121 0.7908612 5.4095613 3.185930e-06
## ask1ASK1Δadipo:dietHFD -2.7503448 1.1288320 -2.4364518 1.937783e-02

fig_2e_m1_emm <- emmeans(fig_2e_m1, specs = c("diet", "ask1"))
fig_2e_m1_pairs <- contrast(fig_2e_m1_emm,

method = "revpairwise",
simple = "each",
combine = TRUE,
adjust = "none") %>%

summary(infer = TRUE)
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fig_2e_m1_emm

## diet ask1 emmean SE df lower.CL upper.CL
## chow ASK1F/F 14.7 0.587 40 13.5 15.9
## HFD ASK1F/F 18.9 0.520 40 17.9 20.0
## chow ASK1Δadipo 14.3 0.659 40 13.0 15.7
## HFD ASK1Δadipo 15.9 0.493 40 14.9 16.8
##
## Confidence level used: 0.95

fig_2e_m1_pairs

## ask1 diet contrast estimate SE df lower.CL upper.CL
## ASK1F/F . HFD - chow 4.278 0.791 40 2.680 5.88
## ASK1Δadipo . HFD - chow 1.528 0.824 40 -0.138 3.19
## . chow ASK1Δadipo - ASK1F/F -0.349 0.876 40 -2.119 1.42
## . HFD ASK1Δadipo - ASK1F/F -3.099 0.715 40 -4.544 -1.65
## t.ratio p.value
## 5.410 <.0001
## 1.853 0.0712
## -0.398 0.6925
## -4.335 0.0001
##
## Confidence level used: 0.95

2.9.6 Figure 2e – plot the model

fig_2e_gg <- gg_mean_error(data = fig_2e,
fit = fig_2e_m1,
fit_emm = fig_2e_m1_emm,
fit_pairs = fig_2e_m1_pairs,
x_col = "diet",
y_col = "glucose_mean",
g_col = "ask1",
wrap_col = NULL,
x_label = "none",
y_label = "Post-baseline glucose (mmol per l)",
g_label = "",
dots = "sina",
dodge_width = 0.8,
adjust = 0.5,
p_show = c(3, 4, 2,1),
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p_pos = c(1,1,2,3)) +
scale_color_manual(values=fig_2_palette)
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2.10 Figure 2f – Effect of ASK1 deletion on glu-
cose infusion rate

2.10.1 Figure 2f – import

range_2f <- "A239:I240"
treatment_levels <- c("ASK1F/F", "ASK1Δadipo")
fig_2f <- read_excel(file_path,

sheet = fig_2_sheet,
range = range_2f,
col_names = FALSE) %>%

transpose(make.names=1) %>%
data.table() %>%
melt(measure.vars = treatment_levels,

variable.name = "treatment",
value.name = "glucose_infusion_rate") %>%

na.omit()
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fig_2f[, treatment := factor(treatment, treatment_levels)]

2.10.2 Figure 2f – exploratory plots

2.10.3 Figure 2f – fit the model

fig_2f_m1 <- lm(glucose_infusion_rate ~ treatment, data = fig_2f)

2.10.4 Figure 2f – check the model

2.10.5 Figure 2f – inference

fig_2f_m1_coef <- summary(fig_2f_m1) %>%
coef()

fig_2f_m1_emm <- emmeans(fig_2f_m1, specs = "treatment")
fig_2f_m1_pairs <- contrast(fig_2f_m1_emm,

method = "revpairwise") %>%
summary(infer = TRUE)

fig_2f_m1_pairs

## contrast estimate SE df lower.CL upper.CL t.ratio p.value
## ASK1Δadipo - ASK1F/F 18.9 6.3 12 5.18 32.6 3.000 0.0111
##
## Confidence level used: 0.95

2.10.6 Figure 2f – plot the model

fig_2f_m1_emm_dt <- summary(fig_2f_m1_emm) %>%
data.table

fig_2f_m1_pairs_dt <- data.table(fig_2f_m1_pairs)
fig_2f_m1_pairs_dt[ , p_pretty := pvalString(p.value)]
fig_2f_m1_pairs_dt[, group1 := 1]
fig_2f_m1_pairs_dt[, group2 := 2]

fig_2f_gg <- ggplot(data = fig_2f,
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aes(x = treatment,
y = glucose_infusion_rate,
color = treatment)) +

# points
geom_sina(alpha = 0.5) +

# plot means and CI
geom_errorbar(data = fig_2f_m1_emm_dt,

aes(y = emmean,
ymin = lower.CL,
ymax = upper.CL,
color = treatment),

width = 0
) +

geom_point(data = fig_2f_m1_emm_dt,
aes(y = emmean,

color = treatment),
size = 3

) +

# plot p-values (y positions are adjusted by eye)
stat_pvalue_manual(fig_2f_m1_pairs_dt,

label = "p_pretty",
y.position=c(95),
tip.length = 0.01) +

# aesthetics
ylab("Glucose infusion rate") +
scale_color_manual(values=fig_2_palette,

name = NULL) +
theme_pubr() +
theme(legend.position="none") +
theme(axis.title.x=element_blank()) +

NULL

fig_2f_gg
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2.11 Figure 2g – Effect of ASK1 deletion on
tissue-specific glucose uptake

2.11.1 Figure 2g – import

range_list <- c("A244:G247", "A250:H253")
# import ASK1F/F
fig_2g_1 <- read_excel(file_path,

sheet = fig_2_sheet,
range = "A244:G247",
col_names = FALSE) %>%

transpose(make.names=1) %>%
data.table()

fig_2g_1[, treatment := "ASK1F/F"]

# import ASK1Δadipo
fig_2g_2 <- read_excel(file_path,

sheet = fig_2_sheet,
range = "A250:H253",
col_names = FALSE) %>%

transpose(make.names=1) %>%
data.table()
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fig_2g_2[, treatment := "ASK1Δadipo"]

# combine
fig_2g <- rbind(fig_2g_1, fig_2g_2)

2.11.2 Figure 2g – exploratory plots

2.11.3 Figure 2g – fit the model

# a more sophisticated would be a mixed model to dampen noise
fig_2g_m1_ingWAT <- lm(ingWAT ~ treatment, data = fig_2g)
fig_2g_m1_epiWAT <- lm(epiWAT ~ treatment, data = fig_2g)
fig_2g_m1_Muscle <- lm(Muscle ~ treatment, data = fig_2g)
fig_2g_m1_BAT <- lm(BAT ~ treatment, data = fig_2g)

2.11.4 Figure 2g – check the model

2.11.5 Figure 2g – inference

fig_2g_infer <- function(m1){
m1_emm <- emmeans(m1, specs = "treatment")
m1_pairs <- contrast(m1_emm,

method = "revpairwise") %>%
summary(infer = TRUE)

return(list(emm = m1_emm,
pairs = m1_pairs))

}

fig_2g_m1_emm_dt <- data.table(NULL)
fig_2g_m1_pairs_dt <- data.table(NULL)
m1_list <- list(fig_2g_m1_ingWAT,

fig_2g_m1_epiWAT,
fig_2g_m1_Muscle,
fig_2g_m1_BAT)

y_cols <- c("ingWAT", "epiWAT", "Muscle", "BAT")
for(i in 1:length(y_cols)){
m1_infer <- fig_2g_infer(m1_list[[i]])

m1_emm_dt <- summary(m1_infer$emm) %>%
data.table
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fig_2g_m1_emm_dt <- rbind(fig_2g_m1_emm_dt,
data.table(tissue = y_cols[i], m1_emm_dt))

m1_pairs_dt <- m1_infer$pairs %>%
data.table

fig_2g_m1_pairs_dt <- rbind(fig_2g_m1_pairs_dt,
data.table(tissue = y_cols[i], m1_pairs_dt))

}

fig_2g_m1_pairs_dt

## tissue contrast estimate SE df lower.CL
## 1: ingWAT ASK1Δadipo - ASK1F/F 3.595000 1.468289 10 0.32344725
## 2: epiWAT ASK1Δadipo - ASK1F/F 1.390238 0.669957 11 -0.08432738
## 3: Muscle ASK1Δadipo - ASK1F/F 2.694048 5.675468 11 -9.79757382
## 4: BAT ASK1Δadipo - ASK1F/F 33.855000 28.715230 7 -34.04572935
## upper.CL t.ratio p.value
## 1: 6.866553 2.4484273 0.03435010
## 2: 2.864804 2.0751153 0.06222096
## 3: 15.185669 0.4746829 0.64429728
## 4: 101.755729 1.1789911 0.27691810

2.11.6 Figure 2g – plot the model

# melt fig_2g

fig_2g_long <- melt(fig_2g,
id.vars = "treatment",
variable.name = "tissue",
value.name = "glucose_uptake")

# change name of ASK1Δadipo label
fig_2g_long[treatment == "ASK1Δadipo", treatment := "ASK1-/-adipo"]
fig_2g_m1_emm_dt[treatment == "ASK1Δadipo", treatment := "ASK1-/-adipo"]

fig_2g_m1_pairs_dt[ , p_pretty := pvalString(p.value)]
fig_2g_m1_pairs_dt[, group1 := 1]
fig_2g_m1_pairs_dt[, group2 := 2]

fig_2g_plot <- function(tissue_i,
y_lab = FALSE, # title y-axis?
g_lab = FALSE # add group label?
){

y_max <- max(fig_2g_long[tissue == tissue_i, glucose_uptake], na.rm=TRUE)
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y_min <- min(fig_2g_long[tissue == tissue_i, glucose_uptake], na.rm=TRUE)
y_pos <- y_max + (y_max-y_min)*.05

gg <- ggplot(data = fig_2g_long[tissue == tissue_i],
aes(x = treatment,

y = glucose_uptake,
color = treatment)) +

# points
geom_sina(alpha = 0.5) +

# plot means and CI
geom_errorbar(data = fig_2g_m1_emm_dt[tissue == tissue_i],

aes(y = emmean,
ymin = lower.CL,
ymax = upper.CL,
color = treatment),

width = 0
) +

geom_point(data = fig_2g_m1_emm_dt[tissue == tissue_i],
aes(y = emmean,

color = treatment),
size = 3

) +

# plot p-values (y positions are adjusted by eye)
stat_pvalue_manual(fig_2g_m1_pairs_dt[tissue == tissue_i],

label = "p_pretty",
y.position=c(y_pos),
tip.length = 0.01) +

# aesthetics
ylab("Glucose Uptake") +
scale_color_manual(values=fig_2_palette,

name = NULL) +
ggtitle(tissue_i)+

theme_pubr() +
theme(legend.position="top") +
theme(axis.title.x = element_blank(),

axis.text.x = element_blank(),
axis.ticks.x = element_blank()) +

NULL
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if(y_lab == FALSE){
gg <- gg + theme(axis.title.y = element_blank())

}
if(g_lab == FALSE){
gg <- gg + theme(legend.position="none")

}

return(gg)
}

y_cols <- c("ingWAT", "epiWAT", "Muscle", "BAT")
legend <- get_legend(fig_2g_plot("ingWAT", y_lab = TRUE, g_lab = TRUE))
gg1 <- fig_2g_plot("ingWAT", y_lab = TRUE, )
gg2 <- fig_2g_plot("epiWAT")
gg3 <- fig_2g_plot("Muscle")
gg4 <- fig_2g_plot("BAT")
top_gg <- plot_grid(gg1, gg2, gg3, gg4,

nrow=1,
rel_widths = c(1.15, 1, 1.05, 1.1)) # by eye

plot_grid(top_gg, legend,
nrow=2,
rel_heights = c(1, 0.1))
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2.12 Figure 2h

2.13 Figure 2i – Effect of ASK1 deletion on liver
TG

range_2i <- "A265:G266"
treatment_levels <- c("ASK1F/F", "ASK1Δadipo")
fig_2i <- read_excel(file_path,

sheet = fig_2_sheet,
range = range_2i,
col_names = FALSE) %>%

transpose(make.names=1) %>%
data.table() %>%
melt(measure.vars = treatment_levels,

variable.name = "treatment",
value.name = "liver_tg") %>%

na.omit()

fig_2i[, treatment := factor(treatment, treatment_levels)]

# View(fig_2i)

2.13.1 Figure 2i – fit the model

fig_2i_m1 <- lm(liver_tg ~ treatment, data = fig_2i)

2.13.2 Figure 2i – check the model

set.seed(1)
qqPlot(fig_2i_m1, id=FALSE)
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##
## Suggested power transformation: 1.294553

• The QQ plot looks okay, in the sense that the observed data points (open
circles) fall within the boundaries set by the dashed line.
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• spread level looks pretty good
• Fit normal model

2.13.3 Figure 2i – inference

fig_2i_m1 <- lm(liver_tg ~ treatment, data = fig_2i)
fig_2i_m1_coef <- cbind(coef(summary(fig_2i_m1)),

confint(fig_2i_m1))
fig_2i_m1_emm <- emmeans(fig_2i_m1, specs = "treatment")
fig_2i_m1_pairs <- contrast(fig_2i_m1_emm,

method = "revpairwise") %>%
summary(infer = TRUE)

fig_2i_m1_pairs

## contrast estimate SE df lower.CL upper.CL t.ratio p.value
## ASK1Δadipo - ASK1F/F -21.6 7.05 10 -37.3 -5.9 -3.066 0.0119
##
## Confidence level used: 0.95

2.13.4 Figure 2i – plot the model

fig_2i_m1_emm_dt <- summary(fig_2i_m1_emm) %>%
data.table

fig_2i_m1_pairs_dt <- data.table(fig_2i_m1_pairs)
fig_2i_m1_pairs_dt[ , p_pretty := pvalString(p.value)]
fig_2i_m1_pairs_dt[, group1 := 1]
fig_2i_m1_pairs_dt[, group2 := 2]

fig_2i_gg <- ggplot(data = fig_2i,
aes(x = treatment,

y = liver_tg,
color = treatment)) +

# points
geom_sina(alpha = 0.5) +

# plot means and CI
geom_errorbar(data = fig_2i_m1_emm_dt,

aes(y = emmean,
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ymin = lower.CL,
ymax = upper.CL,
color = treatment),

width = 0
) +

geom_point(data = fig_2i_m1_emm_dt,
aes(y = emmean,

color = treatment),
size = 3

) +

# plot p-values (y positions are adjusted by eye)
stat_pvalue_manual(fig_2i_m1_pairs_dt,

label = "p_pretty",
y.position=c(95),
tip.length = 0.01) +

# aesthetics
ylab("Liver TG (µmol per g liver)") +
scale_color_manual(values=fig_2_palette,

name = NULL) +
theme_pubr() +
theme(legend.position="none") +
theme(axis.title.x=element_blank()) +

NULL

fig_2i_gg
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2.13.5 Figure 2i – report the model

Mean TG level in ASK1Δadipo mice on a high-fat diet was 21.6 µmol/g less
than that in ASK1F/F mice on a high-fat diet (95% CI: -37.3, -5.9, p = 0.012)
(Figure xxx).

2.14 Figure 2j
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Part III: R fundamentals
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Chapter 3

Data – Reading, Wrangling,
and Writing

Importing data into R can be a struggle for new R users and, unfortunately,
most online “how to import” sources give easy but superficial methods that
don’t follow best practices for increasing reproducibility or do not allow flexible
organization of files within a project.
(TL;DR – use here() from the here package)

1. df <- read.table(file="clipboard") imports data copied to the clip-
board, from an Excel/Sheets file or from an open text file. For this to
be semi-reproducible, a comment specifying the filename, worksheet and
range that was copied is necessary. More problematic (catastrophically so
for reproducibility), is, how does a researcher know that they highlighted
and copied the correct range in the Excel sheet?

2. df <- read.csv(file.choose()) opens the familiar “open file” di-
alog box, which lets the user navigate to the file of choice. For
this to be semi-reproducible, a comment specifying the filename to
import is necessary. The catastrophic problem (for reproducibil-
ity) is, how does a researcher know which file was actually opened
during an R session? The researcher might think they opened
“walker_maine_bee_data_clean_androscoggin.csv” but mistakenly
opened “walker_maine_bee_data_clean_aroostook.csv”.

3. df <- read.table(file="my_data.txt") and df <- read_excel(file="my_data.xlsx")
are reproducible because the filename is explicitly specified. But, this
method requires that “my_data” is physically located in the same folder
as the file containing the R script (the .Rmd file in our case) and this
violates the best practice of clean project organization with different
folders for the different kinds of files (data, R scripts, images, manuscript
text, etc.).

77
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4. R Studio has an elegant import tool in the environment pane that opens
a custom dialog box that allows the researcher to navigate to the file,
and to specify what part of the file to import, such as the specific sheet
and range for an Excel file. This has the same reproducibility issues as
#1 and #2 but R Studio includes the equivalent script, which adds all
relevant information for reproducility. One then simply copies and pastes
this script into a code chunk and voila! The next time the script is run,
the data can be imported from the script without using menus and dialog
boxes. Except that..the script does not seem to take into account that the
working directory of an R Markdown file is not the project folder but
the folder containing the R Markdown file and so this two-step method
fails. More personally, I’d prefer to run a chunk that quickly opens the
data file instead of re-navigating through my file system and re-specifying
the sheet and range every time I re-start the project in a new R session.

There are at least three solutions to the issues raised above, all requiring some
understanding of file paths and directory structure in an operating system. A
file such as “my_data.xlsx” has an absolute file path, which is the full address
of the file (the filename is something like your house street number). The abso-
lute file path of “my_data.xlsx” might be “/Users/jwalker/Documents/applied-
biostatistics/data/my_data.xlsx”. A relative file path is the file path from the
working directory. In an R Studio project, the working directory is the
project directory, which is the directory containing the .Rproj file. This will be
the working directory of the console. Importantly, the working directory of an R
Markdown code chunk is the folder containing the saved R Markdown file. An R
Studio Notebook is an R Markdown file so the working directory of a notebook
code chunk is the folder containing the saved notebook file. If an R Markdown
file is located within the rmd folder, which is located within the project folder,
then the relative file path to “my_file.xlsx” is “../data/my_file.xlsx”. The “..”
tells the file OS to move “up” into the parent directory (which is the project
folder) and the “data” tells the file OS to move “down” into the data folder.
These are put together into a single address using “/”. The beauty of relative
paths is that they remain the same – and so do not break one’s script – if the
project folder, and all of its contents including the data folder and the rmd
folder, is moved to another location on the hard drive (say into a new “Re-
search” folder). By contrast, the absolute file path changes, which breaks any
old script.

The three solutions are

1. Create a relative path to the file using something like file_path <-
"../data/my_data.xlsx". This should always work but it fails on some
computers. For example, if the project folder is on a Windows OS (but
not Mac OS) desktop, the assigned relative address doesn’t seem to look
in the folder containing the file.
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2. Create a setup chunk that reroutes the working directory to the project
folder using the script

# use this in a chuck called "setup" to force the working directory to be
# at the level of the project file.
knitr::opts_knit$set(root.dir = rprojroot::find_rstudio_root_file())

For this to work, the chunk has to be named “setup”, that is, the text inside
the curly brackets at the top of the chunk should be “r setup”. Then, with
this chunk, the relative file path is file_path <- "../data/my_data.xlsx"
if “my_data.xlsx” is immediately inside the data folder which is immediately
inside the project folder. This should work on any machine, and should work
even if a project folder is moved.

3. Use the function here(). The most robust solution seems to be using the
function here() from the here package. The function works something
like this

data_folder <- "data" # path to data that are imported
file_name <- "my_data.xlsx"
file_path <- here(data_folder, file_name) # paste together parts of the address
my_file <- read_excel(file = file_path)

here() creates an absolute path, but one that is created on the fly, and will
change (or should change) correctly if the project folder is moved on the same
machine, to a cloud drive, or to another machine altogether.

3.1 Learning from this chapter

It will be easiest to learn from this chapter by starting with a clean R Markdown
file for the chapter. Create a new R Markdown file and save it to the “Rmd”
folder of your “applied biostats” project.

Important: import/export scripts will not work properly until the file is saved!
Get in the habit of creating the file, saving it immediately, and saving it often.

1. Keep the first chunk that includes the script knitr::opts_chunk$set(echo
= TRUE)

2. Delete all text below this chunk, starting with the header “## R Mark-
down”

3. Copy and paste this chunk into your setup chunk
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knitr::opts_chunk$set(echo = TRUE)

# import and wrangling packages
library(here) # here() creates the absolute path to the file
library(janitor) # clean_names to clean col labels of imported data
library(readxl) # import excel
library(data.table) # use data.table for wrangling

# analysis packages
library(emmeans) # get estimated marginal means and CIs, used for plot

# plotting packages
library(ggplot2) # ggplot environment
library(ggpubr) # publication ready plots

here <- here::here # make sure ``here` uses `here::here`

# relative paths to project folders
data_folder <- "data" # path to data that are imported
output_folder <- "output" # path to data that are saved
image_folder <- "images"

Note on the script above 1. Be kind to the future you by loading only the
packages necessary for the code in the R Markdown file that you are working
on. If your default is to load everything, the future you will be confused why
something was installed. 2. Be kind to the future you by commenting on why
a package is loaded; usually this is a specific function from the package 3. here
<- here::here is my favorite script ever. What is it doing? One can read this
as “assign the function here from the here package to the object here” (this is
reading the script right to left). Why do this? It turns out the multiple packages
define a function called “here”. If any of these packages are loaded after the here
package, then here from here won’t work – it will be replaced by here from the
more recently loaded package. To make sure that here uses the function from
the here package, I simply reassign here from the here package to the object
“here” after loading in all packages.

3.2 Working in R

3.2.1 Importing data

3.2.1.1 Excel file

The Excel dataset is from an experiment on the growth response of zebra finch
chicks to an incubation call that presumably signals “hot environment” to the
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embryos (Mariette, M.M. and Buchanan, K.L., 2016. Prenatal acoustic commu-
nication programs offspring for high posthatching temperatures in a songbird.
Science, 353(6301), pp.812-814). The source file is from the Dryad Repository
here:

file name: “allDatasetsMarietteBuchanan2016.xls”

source: https://datadryad.org/stash/dataset/doi:10.5061/dryad.v8969

Steps

1. Copy the title of the article, which is “Prenatal acoustic communication
programs offspring for high post-hatching temperatures in a songbird”

2. Create a new folder within the “data” folder. Name the folder the title
of the paper by pasting the name from the clipboard. This is the “data
from” folder, since it contains the data from the publication with the title
of the folder.

3. Download the .xls file into this folder

A .xls file is an old (pre 2007) Microsoft Excel file type. It is a binary file and can
only be opened into a readable format with software that knows how to translate
the proprietary format. The more modern Excel file type is .xlsx, which contains
within it multiple xml components. An xml file is a text file, and so contains
readable content, but the content is xml code to display something. In general, I
am a big advocate of archiving stuff as text files (manuscripts, data, scripts, blog
posts) because these will always be readable by future software. Microsoft Excel
is not likely to die anytime soon and software that can read .xls and especially
.xlsx files (again, .xlsx files are text files) is even less likely to disappear but we
can feel even more confident if data are archived as text files. That said, a single
microsoft excel file with multiple sheets is an efficient method for distributing
data and the readxl package provides excellent tools for reading different sheets
of a single .xls or .xlsx file.

The code below uses the function read_excel() from the package readxl. More
about the amazing power of this package is the tidyverse page and chapter 11
in the R for Data Science book.

folder <- "Prenatal acoustic communication programs offspring for high post-hatching temperatures in a songbird"
fn <- "allDatasetsMarietteBuchanan2016.xls"
file_path <- here(data_folder, folder, fn)

chick <- read_excel(file_path,
sheet = "nestlingMass")

chick <- clean_names(chick) # clean column names
chick <- data.table(chick) # convert to data.table

# View(chick)

http://science.sciencemag.org/content/353/6301/812
http://science.sciencemag.org/content/353/6301/812
http://science.sciencemag.org/content/353/6301/812
https://datadryad.org/stash/dataset/doi:10.5061/dryad.v8969
https://readxl.tidyverse.org
http://r4ds.had.co.nz/data-import.html
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This text will consistently uses this protocol for storing and retrieving down-
loaded files. The final line of the chunk is commented out. I do this so that
it does not run when the R Markdown sheet is knitted. But I can highlight
“View(chick”) with the cursor and “Run selected line(s)” from the “Run” menu
and get a new tab with a spreadsheet like view of the imported data.

The first three lines in the script above creates the directory path to the file.
This path includes three variables

1. data_folder – assigned to “data” in the setup chunk. “data” is a folder
within the project folder that contains (or will contain) all datasets for
this text. The data come from many different published papers, so the
data for each publication gets its own folder within “data”.

2. folder – the name of the “data from” folder within “data” containing the
data files. In this text, these folder names will always be the name of the
published paper.

3. filename – the name of the file to read. There may be multiple data files
within the publication’s data folder.

These are all put together into the absolute path using the function here()
from the here package. Take a look at the value of file_path to confirm.

The next three lines (starting with chick <-)

1. read_excel imports the data and assign this to a data.frame named chick
2. clean_names cleans the column names of chick
3. data.table converts chick to a data.table. A data.table is a data.frame

with magical properties.

In steps 2 and 3, the functions take the data.frame and process it in some
way and then assigned the processed data.frame to an object that has the same
name (chick). This script can be made slightly more “elegant” using the “pipe”
operator %>%.

chick <- read_excel(file_path,
sheet = "nestlingMass") %>% # import

clean_names() %>% # clean the column names
data.table() # convert to data.table

This is a single line of code containing three separate operations all piped to-
gether. A way to think about this is

1. The read_excel function imports the data from the file located at
file_path and assigns this data to chick. The pipe operator then sends
this to
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2. the clean_names function, which cleans the column names of “chick”. The
pipe operator then sends this to

3. the data.table function, which convert the data.frame to a data.table.

A 3rd way to do this is with nested functions.

chick <- data.table(clean_names(read_excel(file_path,
sheet = "nestlingMass"))) # convert to data.table

Some R users think the piped code is more readable then the three separate
functions. Maybe. I think we all agree that the nested functions are the least
readable. I use pipes, but I think its worth using the three separate functions
to learn what each is doing.

Let’s back up to understand these steps, and especially the clean_names step.
In your chunk with three separate lines of code, click on the first line, the one
containing read_excel, so that the cursor is somewhere on this line. Then click
on the “run” menu in the top right of the R Studio panel and choose the first
item “Run selected line(s)”. The file will be re-imported.

Look at the column names (or column headers in Excel lingo) of the imported
data using names or colnames (yes, there are elebenty million ways to do any-
thing in R) (names is very general in that it can be used to return the names
of the parts of any list, while colnames is specific to matrix-like objects). Type
this into the console, not into your R Markdown chunk:

names(chick)

## [1] "chick_id" "brood_id"
## [3] "brood_composition" "sex"
## [5] "rank_in_nest" "playback_treatment"
## [7] "nest_temperature_above_ambient" "max_daily_temp_hatch_day"
## [9] "mean_max_temp_hatch_to_day2" "mean_max_temp_hatch_to_day10"
## [11] "mean_max_temp_hatch_to_day13" "hatching_mass"
## [13] "day1_mass" "day2_mass"
## [15] "day10_mass" "day13_mass"
## [17] "day13_tarsus"

In general, it is bad practice to include spaces, parentheses, and special char-
acters such as -, $ or ^, in the column names of a data frame because these
increase handling costs later on. The best practice is to replace a blank with
an underscore, for example rank_in_nest. Some coders separate words with a
period (rank.in.nest). Others mash words together into a single word like this
rankinnest but this should generally be avoided because the result can be hard
to read. Finally, some coders use Caps to separate words like this RankInNest.
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This is easier to read than simple concatenation but the underscore is the easiest
to read.

The clean_names from the janitor package is a beautiful function to clean the
column names of a data frame including replacing spaces with an underscore
and stripping parentheses. The default clean includes changing any uppercase
letter to lower case. Many coders like to work with all lowercase variable names
to avoid having to hit the shift key. I am one of these.

Worst Practices – resist the temptation to change the column names in the
data file, which reduces reproducibility. Leave original data files original. Al-
ways increase reproducibility!

colleague blues – Most researchers live in an Excel world and save data in a
way that is efficient for computing stuff in Excel but not efficient for statistical
analysis using R or other statistical computing software packages (with the
exception of Graphpad Prism). Analyzing data will be much less frustrating
if the data are saved in a format that facilitates analysis. Best practices for
creating data files

1. https://www.youtube.com/watch?time_continue=309&v=Ry2xjTBtNFE
– An excellent video introduction to best practices for organizing data in
a spreadsheet that will subsequently be analyzed by statistics software.

2. Broman, K. W., & Woo, K. H. (2017). Data organization in spreadsheets
(No. e3183v1). https://doi.org/10.7287/peerj.preprints.3183v1 – An ex-
celllent review of best practices for organizing data in a spreadsheet.

3.2.1.1.1 The read_excel function

read_excel is a beautifully flexible function because Excel. Data can be in
different sheets and there can be different datasets within a single sheet. And,
researchers tend to use Excel like a blackboard in that an Excel sheet often
contains calculations such as means, standard deviations and t-tests. When
using read_excel it is important to send the function enough information to
read the correct data. For the chick data, if we simply used

chick <- read_excel(file_path) %>%
clean_names() %>%
data.table()

without specifying the sheet, read_excel defaults to reading the first sheet
(“OccurrenceIncubationCall”), which is not what we wanted. We can specify
the exact range to important using the range = argument

https://www.youtube.com/watch?time_continue=309&v=Ry2xjTBtNFE
https://doi.org/10.7287/peerj.preprints.3183v1
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chick <- read_excel(file_path,
sheet = "nestlingMass",
range = "A1:Q131") %>% # import

clean_names() %>% # clean the column names
data.table() # convert to data.table

This isn’t necessary for these data because the “nestlingMass” sheet contains
only a matrix of data and not extraneous information and the read_excel
function is smart enough to figure this out. For many of the data sets in wet
bench experimental biology, the range argument will be crucial because multiple
datasets are archived on a single sheet.

3.2.1.1.2 Explore with plots

Just for fun, let’s plot the data and reproduce something close to Fig. 2A and
B. We are using the qplot function, which is from the ggplot2 package. qplots
are quick plots – something you want to do to quickly look at data but don’t
want to turn into a publication quality plot.

qplot(x = nest_temperature_above_ambient,
y = day13_mass,
data = chick[playback_treatment == "treat"]) +

geom_smooth(method = "lm")
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qplot(x = nest_temperature_above_ambient,
y = day13_mass,
data = chick[playback_treatment == "cont"]) +

geom_smooth(method = "lm")
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Notes on the code to make these plots

1. the names of the columns to use as the x and y axes were not embed-
ded into quotes (e.g. “nest_temperature_above_ambient”). Sometimes a
column name has to be in quotes and sometimes not. In general, if the
column name is sent to the function as a list (even if its a list with a single
item), the names need to be in quotes. Regardless, remember this when
you are debugging.

2. The first plot includes only the subset of data in which the value of
playback_treatment is “treat”. Similarly, the second plot includes only
the subset of data in which the value of playback_treatment is “cont”.
I have sent a subset of the data to the plot function. There are elebenty
million ways to subset data in R, I have done it the “data.table way”.

3. each argument in the qplot function is on a separate line (created by
adding a return after the comma) and the geom_smooth function is on a
new line. This just makes the function more readable then not doing this.
What do you think?
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qplot(x = nest_temperature_above_ambient, y = day13_mass, data = chick[playback_treatment == "treat"]) + geom_smooth(method = "lm")

4. I have included the name of each argument. This isn’t necessary but it
makes the function more readable and avoids potential bugs. The argu-
ments without the argument names looks like this

qplot(nest_temperature_above_ambient, day13_mass, data = chick[playback_treatment == "treat"]) + geom_smooth(method = "lm")

3.2.1.2 Text file

The example dataset comes from an experiment on the effect of neonicotinoid
pesticides on bumble bee colony growth.

file name: “Whitehorn, O’Connor, Wackers, Goulson (2012) Data from
‘Neonicotinoid pesticide reduces bumblebee colony growth and queen produc-
tion’.csv.csv”

Yes the name of the file has both single quotes in the file name and “.csv” as
part of the file name so that, including the extension, the end of the name is
“.csv.csv”. This is not a good file name

source: https://datadryad.org//resource/doi:10.5061/dryad.1805c973

Steps

1. Copy the title of the paper title, which is “Neonicotinoid pesticide reduces
bumblebee colony growth and queen production”

2. Create a new folder within “data”. Name the folder the title of the paper
by pasting from the clipboard. This is the “data from” folder, since it
contains the data from the publication with the title of the folder.

3. Download the .csv file into this folder

A .csv file is a text file that is comma-delimted, which means that the entries
of a row are separated by commas. A text file is readable by any text editor
software and most other kinds of software. Datasets that are stored as text files
are typically saved as either .csv (where the entries of a row are separated by
commas) or .txt (where the entries are separated by tabs). The base R way to
read a .csv file is using read.csv. The read.table function is more versatile,
as the delimiter can be specified. The function fread() from the data.table
package is fast, smart, and flexible. It is smart in the sense that it guesses
what the delimter is. Unfortunately, because of spaces in the column labels for
this file, fread guesses incorrectly (another reason why spaces in column labels
should be avoided). To overcome this, the statement below specifies that the
file contains a “header” (a line containing column labels)

http://science.sciencemag.org/content/early/2012/03/28/science.1215025
http://science.sciencemag.org/content/early/2012/03/28/science.1215025
https://datadryad.org//resource/doi:10.5061/dryad.1805c973
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folder <- "Neonicotinoid pesticide reduces bumblebee colony growth and queen production"
filename <- "Whitehorn, O'Connor, Wackers, Goulson (2012) Data from 'Neonicotinoid pesticide reduces bumblebee colony growth and queen production'.csv.csv"
file_path <- here(data_folder, folder, filename)
bee <- fread(file_path, header=TRUE) %>%
clean_names()

Here, as with the import of the Excel file, the first three lines create the directory
path to the file. There is no need to pipe bee to data.table() because fread
automatically importants the data as a data.table. It does not need to be
converted.
Here is a reproduction of Fig 2 from the journal article using the ggbarplot
function from the ggpubr package.

bee[, treatment := factor(treatment, c("Control", "Low", "High"))] # reorder factor levels

ggbarplot(data=bee,
x="treatment",
y="new_queens",
add = "mean_se")
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3.2.1.3 Troubleshooting file import

If you get an error that starts with “Error: path does not exist:” then R is not
“seeing” your specified file given the path you’ve given it.
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1. Make sure you loaded the package here in a “setup” chunk and that you
have run the chunk

2. Make sure you have assigned data_folder <- "data" in the setup chunk
and have run the chunk.

3. Make sure your “data” folder is one level inside your project folder. “one
level” means it is not buried deeper inside other folders within the project
folder.

4. Make sure your “data from” folder (the folder with the title of the publi-
cation) is one level inside your “data” folder

5. Make sure your data file is one level inside the correct “data from” folder.
6. Bug alert Make sure you have the name of the “data from …” folder

correct in your script. Do not type the name of the folder. Instead, go to
the finder and highlight the folder containing the data file, copy the name,
return to the R markdown script, type folder <- "" and then paste the
clipboard (the name of the folder) in between the quote marks.

7. Bug alert Make sure the file name is correct in the script. As with the
folder name, I go to the finder and copy the file name and paste it in place.
In Windows use ctrl-a instead of ctrl-c to copy the full filename including
the extension.

More generally, Humans are very good at understanding misspelled and OdDLy
capitalized words but the R language (or any computer language) is very literal.
R is case sensitive (some programming languages are not). “Prenatal acoustic
communication”, “Prenatal Acoustic Communication”, and “prenatal acoustic
communication” are all different values. Spelling AND capitalization have to be
perfect, not simply close. Spelling includes spaces. A frequent bug is a file name
typed as “Prenatal acoustic communication” when the actual name is “Prenatal
acoustic communication”. Can you spot the bug? The original (what we need
to copy) has two spaces between “acoustic” and “communication” while the
incorrect copy has only one.
Spelling bugs are avoided by simply copying and pasting names of folders, names
of files, column names of data frames, and level names of factors, which leads
to a general rule of R scripting…

3.2.1.4 Rule number one in R scripting {# rule1}

Always copy and paste any text that will be inserted into quotes
Do not try to type it out. You have been warned.

3.3 Data wrangling

Data archived in Excel spreadsheets, at least in wet-bench experimental biology
projects, are generally not in a format this is readily analyzed in R, or any
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statistical software other than perhaps Graphpad Prism. Use these examples as
templates for how to import and wrangle Excel-archived data in your project.

3.3.1 Reshaping data – Wide to long

3.3.1.1 Wide to long – Adipsin data

Source: Adipsin preserves beta cells in diabetic mice and associates with pro-
tection from type 2 diabetes in humans

Public source – the Adipsin paper is behind a paywall. A public source of the
paper from NIH is available.

Link to source data

Fig. 1k of the Adipsin paper presents a bar plot of the glucose uptake in response
to control (GFP) or adipsin treatment. A screenshot of the Excel-archived data
is shown above. The data are in wide format. In wide-format, the values
of a single variable (here, this is glucose uptake level) are given in separate
columns for each treatment level (group). The values for the GFP group are in
Column A and the values for the Adipsin group are in Column B. Wide format
is efficient for computations in a spreadsheet, such as computing means and
standard deviations of columns of data, and for plotting.

For most statistical analyses of experimental data in R (and most statistics
software), all values of a single variable should be in a single column. This

https://www.nature.com/articles/s41591-019-0610-4
https://www.nature.com/articles/s41591-019-0610-4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256970/
https://www.nature.com/articles/s41591-019-0610-4#Sec39
https://en.wikipedia.org/wiki/Factor_D
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is called long format. I’ve manually rearranged the data from the archived
spread sheet into long format by stacking each group’s values into a single
column, shown in the screen capture below. All values of glucose uptake are in
a single column. In long format, there needs to be a way to identify which values
belong to which group and this is achieved here with column “treatment”. In
adition to the treatment column.

The difference between wide and long also reflects how we think about statistical
analysis. When we do a t-test to compare the means of glucose uptake between
GFP and Adipsin groups, we might think we have two things: the set of glucose
uptake values for the GFP group and the set of values for the Adipsin group.
When we fit a linear model, we also have two things, the variable treatment
containing treatment level assignment and the variable glucose_uptake contain-
ing the glucose uptake values. In wide format, there is nothing to suggest that
treatment is a variable.

There are many functions to tidy data from wide to long. melt from the
data.table package is especially useful. It is data.table’s version of melt from
the reshape2 package.

The major arguments of data.table::melt are

melt(data, id.vars, measure.vars, variable.name, value.name)

melt takes the data in the columns listed in measure.vars and stacks
these into a single column named value.name. The names of the columns
in measure.vars are the values of the elements in a new column named
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variable.name. The elements of any column in id.vars are repeated p times,
where p is the number of columns that were stacked.

Let’s melt the three different response variables of the adipsin data and merge
them into a single data.table. There are several ways to combine data sets
including merge and cbind. We’ll compare these later.

file_folder <- "Adipsin preserves beta cells in diabetic mice and associates with protection from type 2 diabetes in humans"
fn <- "41591_2019_610_MOESM3_ESM.xlsx"
file_path <- here(data_folder, file_folder, fn)

treatment_levels <- c("db/db-GFP", "db/db-Adipsin")

# as separate line
fig_1k_wide <- read_excel(file_path,

sheet = "Figure 1k",
range = "A3:B9")

fig_1k_wide <- data.table(fig_1k_wide)
fig_1k <- melt(fig_1k_wide,

measure.vars = treatment_levels,
variable.name = "treatment",
value.name = "glucose_uptake")

# or piped -- which do you prefer?
fig_1k <- read_excel(file_path,

sheet = "Figure 1k",
range = "A3:B9") %>%

data.table() %>%
melt(measure.vars = treatment_levels,

variable.name = "treatment",
value.name = "glucose_uptake")

# View(fig_1k) # highlight without the comment sign and "run selected lines()" to view

A pretty-good-plot using the ggpubr package

# put warning=FALSE into the chunk header to supress the warning

gg <- ggstripchart(x = "treatment",
y = "glucose_uptake",
add = "mean_se",
data = fig_1k)

gg
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3.3.1.2 Wide to long – Enteric nervous system data

Source: Rolig, A. S., Mittge, E. K., Ganz, J., Troll, J. V., Melancon, E., Wiles,
T. J., … Guillemin, K. (2017). The enteric nervous system promotes intestinal
health by constraining microbiota composition. PLOS Biology, 15(2), e2000689.

Source data

Let’s import and reshape the data for figure 2d. Look at the excel file and the
data in Fig. 2d. There is a single treament with four levels, but the authors
have organized the data in each level in separate columns and used the column
header as the level name.

https://doi.org/10.1371/journal.pbio.2000689
https://doi.org/10.1371/journal.pbio.2000689
https://doi.org/10.1371/journal.pbio.2000689
https://doi.org/10.1371/journal.pbio.2000689.s008
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Let’s melt the data from wide to long by stacking the four columns into a
single column “neutrophil_count” and adding a treatment column identifying
the group.

folder <- "The enteric nervous system promotes intestinal health by constraining microbiota composition"
filename <- "journal.pbio.2000689.s008.xlsx"
file_path <- here(data_folder, folder, filename)

# figure 2D data
sheet_i <- "Figure 2"
range_i <- "F2:I24"
fig_2d_wide <- read_excel(file_path, sheet=sheet_i, range=range_i) %>%
clean_names() %>%
data.table()

# change column names by replacing without "_donor" in each name
# these new column names will become the levels of the treatment factor
new_colnames <- c("gf", "wt", "sox10", "iap_mo")
setnames(fig_2d_wide, old=colnames(fig_2d_wide), new=new_colnames)
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# wide to long
fig_2d <- melt(fig_2d_wide,

measure.vars=colnames(fig_2d_wide),
variable.name="treatment",
value.name="neutrophil_count")

# omit empty rows
fig_2d <- na.omit(fig_2d)

# re-order factors
fig_2d[, treatment := factor(treatment,

levels = c("wt", "gf", "sox10", "iap_mo"))]

# View(fig_2d)

To learn (instead of just copy and modify), it’s best to do this in steps and not
run the whole chunk. At each step, look at the result using View. The script
above includes three extra wrangling steps.

1. Changing column names in fig_2d_wide. The column names in wide
format will become the treatment level names of the treatment factor after
reshaping. It will be easier down the road if these names are shorter and
the ”_donor” in each name is redundant. The setnames function renames
the column names.

2. For these data, the number of measures within the different treatments
differs and, as a consequence, there are multiple cells with NA which in-
dicates a missing value. View(fig_2d_wide) (this can be typed in the
console) to see this. After reshaping to long format (fig_2d), the rows
with missing values become empty rows – there is no useful information
in them (View this). To see this, re-run the lines of the chunk up to
the line “# omit empty rows”. The na.omit function deletes any row
with missing values. Here, this deletes these information-less rows. Be
very careful with na.omit. You do not want to delete rows of data that
contain information you want.

3. For both analysis and plots, we want to compare values to the control
level, which is named “wt” for the fig_2d data. That is, we want “wt” to
be the reference level. To achieve this, the levels of the factor treatment
need to be re-ordered using the levels argument. (note, I typically do
not add “levels =”, but simply pass the list of levels)

3.3.1.3 Wide to long – bee data

The example above is pretty easy, because the all columns in the original data
frame are melted (stacked). Here is an example in which only a subset of columns
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are stacked. In addition, only a subset of the remaining columns are retained in
the long format data frame. The data are from Panel A of supplement Fig.
8 (https://journals.plos.org/plosbiology/article/file?type=supplementary&id=
info:doi/10.1371/journal.pbio.2003467.s019) from
Source: Kešnerová, L., Mars, R.A., Ellegaard, K.M., Troilo, M., Sauer, U. and
Engel, P., 2017. Disentangling metabolic functions of bacteria in the honey bee
gut. PLoS biology, 15(12), p.e2003467.
Source data

folder <- "Data from Disentangling metabolic functions of bacteria in the honey bee gut"
filename <- "journal.pbio.2003467.s001.xlsx"

# figure 2D data
sheet_i <- "S8 Fig"
range_i <- "A2:H12"
file_path <- here(data_folder, folder, filename)
fig_s8a_wide <- read_excel(file_path,

sheet=sheet_i,
range=range_i) %>%

clean_names() %>%
data.table()

# wide to long
stack_cols <- paste0("replicate", 1:5)
fig_s8a <- melt(fig_s8a_wide,

id.vars = c("media", "time_h"),
measure.vars = stack_cols,
variable.name = "Replicate",
value.name = "OD600") # measure of absorbance at 600nm

3.3.1.4 Wide to long – stacking multiple sets of columns

This example comes from my lab, where a student measured sprint speed in
each fish three times prior to treatment and three times following treatment.
The wide format data looked something like this

set.seed(1)
fd_wide <- data.table(fish_ID=paste0("fish",1:4),

treatment=rep(c("cn", "tr"), each=2),
length=rnorm(4, 12, 2),
pre_1=rnorm(4, 50, 5),
pre_2=rnorm(4, 50, 5),
pre_3=rnorm(4, 50, 5),
post_1=rnorm(4, 50, 5),

https://journals.plos.org/plosbiology/article/file?type=supplementary&id=info:doi/10.1371/journal.pbio.2003467.s019
https://journals.plos.org/plosbiology/article/file?type=supplementary&id=info:doi/10.1371/journal.pbio.2003467.s019
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2003467
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2003467
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2003467
https://doi.org/10.1371/journal.pbio.2003467.s001
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post_2=rnorm(4, 50, 5),
post_3=rnorm(4, 50, 5)
)

knitr::kable(fd_wide, digits=1)

fish_ID

treatment

length

pre_1

pre_2

pre_3

post_1

post_2

post_3

fish1

cn

10.7

51.6

52.9

46.9

49.9

54.6

53.1

fish2

cn

12.4

45.9

48.5

38.9

54.7

53.9

49.7
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fish3

tr

10.3

52.4

57.6

55.6

54.1

50.4

49.2

fish4

tr

15.2

53.7

51.9

49.8

53.0

40.1

42.6

To analyze the response (post-treatment sprint) adjusted for pre-treatment
sprint, the three pre-treatment sprint measures need to be stacked into a single
column and the three post-treatment measures need to be stacked into a single
column. This is easy using melt from the data.table package.

pre_cols <- paste("pre", 1:3, sep="_")
post_cols <- paste("post", 1:3, sep="_")
fd <- melt(fd_wide,

id.vars=c("fish_ID", "treatment", "length"),
measure.vars=list(pre_cols, post_cols),
variable.name="Order",
value.name=c("sprint_pre", "sprint_post"))

knitr::kable(fd, digits=1)

fish_ID

treatment

length
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Order

sprint_pre

sprint_post

fish1

cn

10.7

1

51.6

49.9

fish2

cn

12.4

1

45.9

54.7

fish3

tr

10.3

1

52.4

54.1

fish4

tr

15.2

1

53.7

53.0

fish1

cn

10.7

2
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3.3.2 Reshaping data – Transpose (turning the columns
into rows)

3.3.2.1 Transpose – PI3K inhibitors data

Source: Suppression of insulin feedback enhances the efficacy of PI3K inhibitors

Source data

Figure 3A of this publication is a plot of blood glucose level taken on the same
individual mice from four treatment groups over six time periods. Data on a
single variable such as blood glucose, taken on the same individual at multiple
time points, are known as longitudial data but are often mistakenly called
repeated measures data. There are mulitple ways to analyze longitudinal
data, some goood, some less good. There are two reasonable ways to archive
longitudinal data for analysis in R. The Excel-archived data for Figure 3A is
neither. A screen capture of two of the four treatment groups is shown below.

In the archived data the individual mice are in columns. The measure at each
time point is in rows. And the treatment group is in blocks. Typical data
for analysis in R should have the individual mice in rows and each variable
in columns (an exception in experimental biology is omics data, such as RNA

https://www.nature.com/articles/s41586-018-0343-4
https://www.nature.com/articles/s41586-018-0343-4#Sec15
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expression levels. Many packages with functions to analyze these data have the
genes on each row and the individual on each column). The Figure 3A data are
turned on its side. We need to transpose the data, or rotate the matrix 90
degrees (make the columns rows and the rows columns) to turn the data into
wide format. From this we can create a new data.table with the data in long
format.

folder <- "Suppression of insulin feedback enhances the efficacy of PI3K inhibitors"
filename <- "41586_2018_343_MOESM6_ESM.xlsx"
file_path <- here(data_folder, folder, filename)
pi3k_side <- read_excel(file_path,

sheet = "Figure 3A (Blood Glucose)",
range = "A2:U7",
col_names = FALSE) %>%

data.table()

# give columns names as the treatment of each mouse
# verify n=5 per group
treatment_levels <- c("Chow", "Ketogenic", "Metformin", "SGLT2i")
colnames(pi3k_side) <- c("time",

rep(treatment_levels, each = 5))

# transpose
# keep colnames in "side" as values of treatment col in "wide"
# make values of "time" in "side" the colnames in "wide"
pi3k_wide <- transpose(pi3k_side,

keep.names = "treatment",
make.names = "time")

# make a baseline column
pi3k_wide[, glucose_0 := get("0")]

# make-up a mouse id for each mouse
pi3k_wide[, id := paste(treatment, 1:.N, sep = "_"), by = treatment]

# make treatement a factor with "chow" as reference
pi3k_wide[, treatment := factor(treatment, treatment_levels)]

# make a long version
pi3k_long <- melt(pi3k_wide,

id.vars = c("treatment", "id", "glucose_0"),
variable.name = "time",
value.name = "glucose")

Notes
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1. Read the comments on the usage of the keep.names and make.names
arguments of transpose. These are powerful.

2. pi3k_wide has column names that are times (in minutes). This presents
wrangling problems (column names shouldn’t be numbers. Here it is useful
to create the long format data.table with a time column of numbers).
For example, the code above creates copies the column “0” into a new
column “glucose_0” using glucose_0 := get("0"). Had the code been
glucose_0 := "0", all values would be the character “0”. Had the code
been glucose_0 := 0, all values would be the number 0. get looks for
the column with the name of whatever is inside the parentheses.

Let’s do a quick plot to examine the data

qplot(x = time,
y = glucose,
data = pi3k_long,
color = treatment) +

geom_line(aes(group = id))
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3.3.3 Combining data

Source Bak, A.M., Vendelbo, M.H., Christensen, B., Viggers, R., Bibby, B.M.,
Rungby, J., Jørgensen, J.O.L., Møller, N. and Jessen, N., 2018. Prolonged

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200817
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200817
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fasting-induced metabolic signatures in human skeletal muscle of lean and obese
men. PloS one, 13(9), p.e0200817.

Source data

The data are from a randomized crossover design where 18 men (9 lean and 9
obese) were measured for multiple metabolic markers at two times: 1) in a post-
absorptive state after 12 hours overnight fast, and 2) in a prolonged fasting state
after 72 hours of fasting. In addition, at each time point, metabolic markers
were measured prior to and after an insulin infusion. Here, we want to reproduce
values in Table 2, which are measures of mean blood insulin and metabolite levels
after 12 hours and 72 hours fasting in both the lean and obese groups.

A difficulty for the analyst is that the response data are in the “Table 2” sheet
but the variable containing the assignment to “lean” or “obese” group is in the
“Table 1” sheet. To analyze these response, the two datasets need to be com-
bined into a single data frame. The important consideration when combining
data is that like is matched with like. For the fasting dataset, “like” is the sub-
ject id, and we have some data for each subject id in Table 1 and other data
for the same subject ids in Table 2. This means that we essentially want to
glue the columns of table 2 to the columns of table 1 in a way that insures
that the correct data for each subject id is on the same row. This is a bit more
complicated for these data because Table 1 contains 18 data rows, one for each
subject id and Table 2 contains 36 data rows, 2 for each subject id, because each
subject has data measured at 12 hours and at 72 hours.

3.3.4 Subsetting data

It is common to see researchers create multiple subsets of data for further pro-
cessing. This practice should be be discouraged because the same variables will
be in multiple data frames and it can be hard to keep track of any processing
of variables in the different datasets. Instead, subset the data at the level of
analysis.

There are many ways to subset data in R. Experienced users tend to divide
up into those using base R, those using the tidyverse packages, or those using
data.table. Learn one well. This book uses data.table. Before outlining usage
in data.table, let’s back up a bit and review different indexing systems.

• In Excel, rows are specified (or “indexed”) by numbers and columns by
letters. Every cell has an address, for example C2 is the cell in the 2nd
row and 3rd column. Notice that in Excel, the column part of the address
comes before the row part.

• In statistics, it is extremely common to use a system where xij is the value
of the element in the ith row and jth column of the matrix X. Notice that
in this notatin, the row index (i) comes before the column index (j).

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200817
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200817
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200817
https://datadryad.org/stash/dataset/doi:10.5061/dryad.6121hj7
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• In programming languages, including R, it is extremely common to use a
system where my_data[i, j] is the value of the element in the ith row and
jth column of the matrix-like object named “my_data” (such as a data
frame in R).

• data.table explicitly refers to the row index and column index as i and j.

3.3.4.1 Specifying a subset of rows (“observations” or “cases”)

A subset of rows is specified using either a list of row numbers or

In a data.table, a subset of rows is specified using either a list of row numbers
or a combination of comparison operators (==, !=, >, <, >=, <=, %in%) and
Boolean logic operators (&, |, ! – these are “and”, “or”, “not”) as i.

Let’s use the pi3k_long data from above to explore this. First, the plot of plasma
glucose for all individuals in each treatment group across all time points.

qplot(x = time,
y = glucose,
data = pi3k_long,
color = treatment) +

geom_line(aes(group = id))
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pi3k_long[treatment == "Chow",]) is the subset of rows in which entries in
the column “treatment” take the value “Chow” using the “is equal” (“==”)
operator
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qplot(x = time,
y = glucose,
data = pi3k_long[treatment == "Chow",],
color = treatment) +

geom_line(aes(group = id))
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And the subset of rows in which entries in the column “treatment” take any
value but “Chow” using the “not equal” operator (“!=”).

qplot(x = time,
y = glucose,
data = pi3k_long[treatment != "Chow",],
color = treatment) +

geom_line(aes(group = id))
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The subset of rows in which entries in the column “treatment” take either the
value “Chow” or the value “SGLT2i” by combining two “is equal” (“==”) op-
erators using the OR (“|”) boolean operator

qplot(x = time,
y = glucose,
data = pi3k_long[treatment == "Chow" | treatment == "SGLT2i",],
color = treatment) +

geom_line(aes(group = id))
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The subset of rows in which entries in the column “time” take either the value
“30” or the value “60” using the “in a list” operator (%in%). The values in the
“time” column look like integers but are actually treatment levels (which act
like string or character variables).

qplot(x = time,
y = glucose,
data = pi3k_long[time %in% c("30", "60"),],
color = treatment) +

geom_line(aes(group = id))
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The subset of rows in which entries in the column “time_c” are less than or
equal to 60 using the “less than or equal to” operator AND the value in the
treatment column is in the list (“Chow”, “SGLT2i”). The two comparisons are
combined with the AND (“&”) Boolean operator.

pi3k_long[, time_c := as.numeric(as.character(time))]
qplot(x = time,

y = glucose,
data = pi3k_long[time_c <= 30 & treatment %in% c("Chow", "SGLT2i"),],
color = treatment) +

geom_line(aes(group = id))
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The same result as above but using different operators. I would describe this
as, the subset of rows in which entries in the column “time_c” are less than
or equal to 60 using the “less than or equal to” operator AND the value in the
treatment column is either “Chow” OR “SGLT2i”. The two comparisons are
combined with the AND (“&”) Boolean operator. The order of operations is
determined by the parentheses, as with all algebra.

pi3k_long[, time_c := as.numeric(as.character(time))]
qplot(x = time,

y = glucose,
data = pi3k_long[time_c <= 30 & (treatment == "Chow" | treatment == "SGLT2i"),],
color = treatment) +

geom_line(aes(group = id))
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3.3.5 Wrangling columns

3.3.5.1 Creating new columns that are functions of values in existing
columnes

3.3.5.2 Change the reference level of a factor

3.3.5.3 Converting a single column with all combinations of a 2 x 2
factorial experiment into two columns, each containing the
two levels of a factor

Source: Tauriello, D., Palomo-Ponce, S., Stork, D. et al. TGF� drives immune
evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–
543 doi:10.1038/nature25492

Source data

filename: “41586_2018_BFnature25492_MOESM10_ESM.xlsx”

sheet: “Fig. 4h-tumours”

The analysis of the data in Fig. 4h specifies a single X variable “Treatment” with
four levels (or groups): “Con”, “Gal”, “aPD-L1”, and “Gal+aPD-L1”. These
levels indicate that the design is actually factorial with two factors, each with
two levels. The first factor has levels “no Gal” and “Gal”. The second factor has
levels “no aPD-L1”, “aPD-L1”. The single column Treatment “flattens” the 2
X 2 factorial design to a 4 x 1 design. In general, we would want to analyze an

doi:10.1038/nature25492
https://www.nature.com/articles/nature25492#Sec23
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experiment like this as factorial model, because this allows us to make inferences
about the interaction effect between the two factors. For these inferences, we
need a standard error, or a confidence interval, or a p-value of the estimate,
which we can easily get from the factorial model. In order to analyze the data
with a factorial model, we need to create two new columns – one column is the
factor variable containing the two levels of Gal and one column is the factor
variable containing the two levels of aPD-L1.

gal_levels <- c("no Gal", "Gal")
tumor[, gal := ifelse(treatment == "Gal" | treatment == "Gal+aPD-L1",

gal_levels[2],
gal_levels[1])]

apd_levels <- c("no aPD-L1", "aPD-L1")
tumor[, apdl1 := ifelse(treatment == "aPD-L1" | treatment == "Gal+aPD-L1",

apd_levels[2],
apd_levels[1])]

# re-order factor levels
tumor[, gal:=factor(gal, gal_levels)]
tumor[, apdl1:=factor(apdl1, apd_levels)]

A way to check the results to make sure that our conversion is correct is to
compute the sampel size for the 2 x 2 combinations, but include the original
treatment column in the by list.

tumor[!is.na(num_positive_per_mm), .(N=.N), by=.(treatment, gal, apdl1)]

## treatment gal apdl1 N
## 1: Con no Gal no aPD-L1 124
## 2: Gal Gal no aPD-L1 89
## 3: aPD-L1 no Gal aPD-L1 101
## 4: Gal+aPD-L1 Gal aPD-L1 58

That looks good.

Bug alert If you break Rule #1, and type in the treatment level “Gal+aPD-L1”
as “Gal + aPD-L1”, then you will get new columns containing junk.

## treatment gal apdl1 N
## 1: Con no Gal no aPD-L1 124
## 2: Gal Gal no aPD-L1 89
## 3: aPD-L1 no Gal aPD-L1 101
## 4: Gal+aPD-L1 no Gal no aPD-L1 58
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Remember Rule #1. Always copy and paste any text that will be inserted into
quotes. This is easily done here by typing unique(tumor$treatment) into the
console. This function returns the unique values of the column “treatment” of
the data.table “tumor”.

unique(tumor$treatment) [1] “Con” “Gal” “aPD-L1” “Gal+aPD-
L1”

Now, copy the name of a level and paste into your code. Repeat until done.

3.3.6 Missing data

Source: Deletion of Cdkn1b in ACI rats leads to increased proliferation and
pregnancy-associated changes in the mammary gland due to perturbed systemic
endocrine environment

Source data

Supplement Figure 1F of this paper shows weight as a function of age class and
genotype for the whole body and 8 organs. There are some missing weights
in the Excel-archived data. These missing data are designated with a minus
“-” sign. To import these data in correctly, use the na = argument in the
read_excel function.

file_folder <- "Deletion of Cdkn1b in ACI rats leads to increased proliferation and pregnancy-associated changes in the mammary gland due to perturbed systemic endocrine environment"
file_name <- "journal.pgen.1008002.s008.xlsx"
file_path <- here(data_folder, file_folder, file_name)

fig_s1f <- read_excel(file_path,
sheet = "all weights",
range = "A2:K57",
na = "-",
col_names = TRUE) %>%

clean_names() %>%
data.table()

fig_s1f[, genotype := factor(genotype, c("+/+", "-/-"))]
fig_s1f[, age_class := ifelse(age_at_sac_wks <= 6.0, "4-6", "8+")]

# View(fig_s1f)

Notes

1. In R, a value of “NA” represents missing.

https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008002
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008002
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008002
https://doi.org/10.1371/journal.pgen.1008002.s008
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2. The default value for na = is an empty (or blank) cell (not a space but a
cell that is empty).

3. na = accepts a list of strings, for example na = c("", "-99", "--") that
will all be read as na.

3.3.6.1 Handling missing data

3.3.6.1.1 Many base R functions used for summary measures require
NA handling

mean(fig_s1f[, ovary]) # returns "NA"

## [1] NA

mean(fig_s1f[, ovary], na.rm = TRUE) # returns the mean

## [1] 0.2489524

sd(fig_s1f[, ovary]) # returns "NA"

## [1] NA

sd(fig_s1f[, ovary], na.rm = TRUE) # returns the mean

## [1] 0.151694

sum(fig_s1f[, ovary]) # returns "NA"

## [1] NA

sum(fig_s1f[, ovary], na.rm = TRUE) # returns the mean

## [1] 10.456

There are many ways to get the sample size for a particular variable. Be careful
if using length() which counts NA as part of the vector of values.

3.3.6.1.2 The !is.na function is useful
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length(fig_s1f[, ovary])

## [1] 55

length(fig_s1f[!is.na(ovary), ovary])

## [1] 42

Notes

1. !is.na(ovary) is taking the subset of rows of fig_s1f for which the value
of “ovary” is not NA (!is.na is read “not is.na”)

This is especially useful if you are creating your own code uses counts. Here I
create a table of means, standard error of the mean, and 95% CIs of the mean
for each genotype group. But first, this script generates the wrong N for each
group (since there are missing values), although the mean and SD are correct.

fig_s1f[, .(mean = mean(spleen, na.rm = TRUE),
n = .N,
sd = sd(spleen, na.rm = TRUE)),

by = genotype]

## genotype mean n sd
## 1: -/- 0.5801333 21 0.13680480
## 2: +/+ 0.2956667 34 0.04460855

To compute the correct n, which will be necessary for computing the SE and
the CI, use !is.na

spleen_summary <- fig_s1f[!is.na(spleen), .(mean = mean(spleen),
n = .N,
sd = sd(spleen)),

by = genotype]
spleen_summary[, se := sd/sqrt(n)]
spleen_summary[, lower := mean + se*qt(.025, (n-1))]
spleen_summary[, upper := mean + se*qt(.975, (n-1))]
spleen_summary

## genotype mean n sd se lower upper
## 1: -/- 0.5801333 15 0.13680480 0.03532285 0.5043734 0.6558933
## 2: +/+ 0.2956667 27 0.04460855 0.00858492 0.2780201 0.3133132
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3.3.6.1.3 ggplot functions automatically handle missing values

with a useful warning.

qplot(x = body_wt_g_sac,
y = spleen,
color = genotype,
data = fig_s1f)
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3.3.6.1.4 Regression model functions (lm, glm, gls, etc.) handle
missing values by default

Missing data in regression model functions such as lm are handled using the
argument na.action = and the default is “na.omit”, which omits any rows
that contain a missing value in one or more of the model variables (it includes
rows if these contain missing values only in the columns not included in the
model). It’s as if the user took the subset of data including only the columns
containing the model variables and then deleted any row with missing values.

Here is the coefficient table of the fit model object that did not explictly tell the
lm function how to handle missing data.

m1 <- lm(spleen ~ body_wt_g_sac + genotype,
data = fig_s1f)

coef(summary(m1))
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## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.04238009 0.0242993900 1.744081 8.902319e-02
## body_wt_g_sac 0.00167493 0.0001506493 11.118067 1.170042e-13
## genotype-/- 0.23760586 0.0147600545 16.097898 8.072069e-19

Here is the coefficient table of the fit model object that did explicitly tell lm
how to handle missing data, using the argument na.action = "na.exclude".
These coefficient tables are the same.

m2 <- lm(spleen ~ body_wt_g_sac + genotype,
data = fig_s1f,
na.action = "na.exclude")

coef(summary(m2))

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.04238009 0.0242993900 1.744081 8.902319e-02
## body_wt_g_sac 0.00167493 0.0001506493 11.118067 1.170042e-13
## genotype-/- 0.23760586 0.0147600545 16.097898 8.072069e-19

3.3.6.2 But…beware of fitted, predicted, or residual values from
regression model functions unless you’ve explictly told the
function how to handle missing values

Use na.action = "na.exclude" if you want to add the fitted (or predicted)
values or residuals as new columns in the original data object (fig_sf1). Com-
pare the length of the fitted values vector from models m1 (using the default
“na.omit”) and m2 (using the “na.exclude”).

length(fitted(m1))

## [1] 42

length(fitted(m2))

## [1] 55

There are 55 observations (rows in the data) but only 42 complete rows with no
missing values. The vector of fitted values from m1 has 42 fitted values. The
vector of fitted values from m2 has 55 elements, the 42 fitted values plus 13 NA
elements.
This is important if we want to do something like add the fitted values (or
residuals, or some function of these) to the original data object (fig_sf1). Here
I compute the spleen weights adjusted to the mean body weight of the control
(“+/+”) group using the residuals from m1 and m2.
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mean_x_control <- mean(fig_s1f[genotype == "+/+", body_wt_g_sac])
b <- coef(m1)
fig_s1f[, spleen_adj_m1 := b[1] +

b[2]*mean_x_control +
b[3]*(as.integer(genotype)-1 +
residuals(m1))]

fig_s1f[, spleen_adj_m2 := b[1] +
b[2]*mean_x_control +
b[3]*(as.integer(genotype)-1 +
residuals(m2))]

# View(fig_s1f)

The computation of “spleen_adj_m1” returns a warning that the values of
residuals(m1) were recycled (the first 42 elements of the new column were
filled with the 42 residuals and the last 13 elements of the new column were
filled with the first 13 residuals) – after the first row of missing data, all of
these computed adjusted values are wrong. Using residuals(m2), the adjusted
values are matched to the correct row and the rows with missing variables do
not have an adjusted value (because there is no residual to compute this).

3.4 Saving data

For many projects, it is uncommon to save data. I might save simulated data
if it takes a long time (tens of minutes to hours or even days) to generate these
and I simply want to work with the simulated data in the future and not have
to regenerate it. Or I might save processed data if it takes a long time to import
and process and I want to analyze the processed data in the future and not have
to re-import and process it.

If the data will only be used in this or future R projects, the data can be saved
as an R object using saveRDS()

outfile_name <- "Prenatal acoustic communication programs offspring for high post-hatching temperatures in a songbird.Rds"
save_file_path <- here(output_folder, outfile_name)
saveRDS(object = chick, file = save_file_path)

# to read this use
chick <- readRDS(save_file_path)

Reading a large .Rds file is very fast compared to reading the same data stored
as a text file. However, if the data need to be imported into some other software,
such as a spreadsheet, then save the data as a text file.
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# save the data to output folder

# tab delimited
outfile_name <- "Prenatal acoustic communication programs offspring for high post-hatching temperatures in a songbird.txt"
save_file_path <- here(output_folder, outfile_name)
write.table(chick, save_file_path, sep="\t", quote=FALSE)

# comma delimited
outfile_name <- "Prenatal acoustic communication programs offspring for high post-hatching temperatures in a songbird.csv"
save_file_path <- here(output_folder, outfile_name)
write.table(chick, save_file_path, sep=",", quote=FALSE)

Look at your project directory to make sure the file is where it should be!
We used write.table() to create a tab-delimited text file using sep="\t" to
specify tabs to separate the row elements. ” �” is the standard character string
for a tab. Check in your output folder and open the file in a text editor.

3.5 Exercises

1. Import and pretty-good-plot the data for Figure 2i of the Adipsin paper.
You will need to download and archive the Excel file for “Figure 2”. Store
this within the “Adipsin preserves beta cells…” folder.

• The data are the percent of cells staining for NKX6.1, which is a transcrip-
tion factor protein that regulates beta cell development in the pancreas.
Beta cells sense glucose levels in the blood and secrete insulin. Disruption
of the insulin signaling system results in Diabetes mellitus.

• The data are in wide format, with each treatment group in a separate
column. The data need to be melted into long format with a new column
called “treatment”.

• This will give you a pretty good plot of the data (if the data object is
named “adipsin_fig2i”)

ggstripchart(data = adipsin_fig2i,
x = "treatment",
y = "nkx6_1",
add = "mean_se")

https://en.wikipedia.org/wiki/NKX6-1
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2. Import and quick pretty-good-plot the data for Figure 3b of the PI3K
paper. You will need to download and archive the Excel file for “Figure
3”. Store this within the “Suppression of insulin feedback enhances…”
folder.

• The data are c-peptide levels in response to the treatments. C-peptide is
cleaved from the pro-insulin polypeptide and circulates in the blood and
is a marker of how much insulin is being produced by the beta cells of the
pancreas.

• The data are in wide format, with each treatment group in a separate
column. The data need to be melted into long format with a new column
called “treatment”.

• Modify the code from exercise 1 to pretty-good-plot the data as in exercise
1.

https://en.wikipedia.org/wiki/C-peptide
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Chapter 4

Plotting Models

So, along the lines of Sarah Susanka’s “Not So Big House,” Kolbert asks the
group, “What would a Pretty Good House look like?” – Michael Maines1

When it comes to plotting, many researchers mindlessly generate plots that are
easily generated by the software and look like the typical plots published in
the field. The resulting plot is comforting because it is familiar, not because
it effectively communicates what a good plot should communicate – the model
results.

Plots should be the focus of both the reader and researcher. Instead of mindless
plotting, a researcher should ask a series of questions of every plot

1. What is the point of each element in a plot?
2. Are these the points that I most want to communicate?
3. Are there better practices for communicating these points?
4. Are the points that I want to communicate that are not covered by these

elements?

The answer to these questions should inform what is and what is not plotted.
The result is a pretty good plot. The idea of a pretty good plot is borrowed
from the “pretty good house” concept that grew out of a collaborative group
of builders and architects in Northern New England. The “pretty good house”
combines best practices for building an earth friendly, high performance home
at a reasonable cost. There is no pretty good house governing body that awards
certificates of achievement but, instead, a set of metrics and a collection of
building practices that can achieve these.

A typical pretty good plot contains some combination of
1“The Pretty Good House - Finding the right balance between construction cost and energy

performance”. https://www.greenbuildingadvisor.com/article/the-pretty-good-house
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https://www.greenbuildingadvisor.com/article/the-pretty-good-house
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1. Modeled effects with confidence intervals. “Effects” are the coefficients
of a model, or contrasts constructed from the model, such as pairwise
differences between the means of the levels of a factor. Inferences are
typically made from the estimated effects

2. Modeled means and standard errors or confidence intervals.
3. Raw data points or a summary distribution of these.

4.1 Pretty good plots show the model and the
data

The data to introduce best practices in plotting come from “The enteric nervous
system promotes intestinal health by constraining microbiota composition”2.
The researchers found that zebrafish with a sox10 mutation lacked an enteric
nervous system and developed a microbiota-dependent inflammation. The pa-
per includes several experiments to probe the hypothesis that the ENS regulates
microbial community composition and, in turn, inflammatory status. The data
here are from Fig. 2 of the paper, which reports the results of one of a set of
experiments to test the hypothesis that microbiota from sox10 mutants (that
induce inflammation) are necessary and sufficient to induce inflammation in
wildtype guts. In this experiment, homogenized intestines and their microbial
community from four different donor groups were added to the flasks housing
the zebrafish. The response variable is neutrophil count. Neutrophils are a
white blood cell that increase in number during inflammation. The four treat-
ment levels are the different donors of intestinal microbes: wt (wild type), gf
(germ free, so no microbes are transferred), iap_mo (a control “for the possi-
bility that nonbacterial factors such as host pro-inflammatory cytokines rather
than microbial derived factors cause transmissible intestinal inflammation”),
and sox10.

4.1.1 Pretty good plot component 1: Modeled effects plot

Biologists infer the biological consequences of a treatment by interpreting the
magnitude and sign of treatment “effects”, such as the differences in means
among treatment levels. Why then do we mostly plot treatment level means,
where effects can only be inferred indirectly, by mentally computing differences
in means? Instead, our primary plots should be effects plots, which directly
communicate treatment effects, and the uncertainty in the estimates of these
effects.
The y-axis contains all pairwise comparisons among the four treatment levels.
The x-axis is the response, which is the ratio of the means of the two groups

2Rolig, A.S., Mittge, E.K., Ganz, J., Troll, J.V., Melancon, E., Wiles, T.J., Alligood, K.,
Stephens, W.Z., Eisen, J.S. and Guillemin, K., 2017. The enteric nervous system promotes
intestinal health by constraining microbiota composition. PLoS biology, 15(2), p.e2000689
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Figure 4.1: Effects Plot

in the comparison. For example, the top comparison shows that guts in fish
exposed to sox10 donors have 2.7X more neutrophils per length of gut than
guts in fish exposed to wild type donors. The bars are 95% confidence intervals,
with is the range of effects that are compatible with the observed data at the 95%
level (confidence intervals are disscussed in depth in chapter xxx.). The small
end of the interval for the sox10/wt comparison is 1.31, meaning that effects
as small as 31% increased neutrophil count are compatible with the data. It
is up to the research community to decide if 2.7X or 1.31X are physiologically
meaningful effects. p-values from the hypothesis tests are included.

4.1.2 Pretty good plot component 2: Modeled mean and
CI plot

Often the means of the treatment levels are meaningful, for example, if neu-
trophils per length of gut is a standard measure then researchers working in
this area will be familiar with usual and unusal values. The data used in Fig
4.1 are used to plot means and confidence intervals of the mean using a bar
chart, which is a pretty good chart type for measures such as counts in which
negative values are prohibited and zero is meaningful.

Fig. 4.2 plots the modeled means, represented by the tops of the bars, the
modeled 95% confidence intervals of each mean, represented by the error bars,
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Figure 4.2: Mean and error plot

and the p-values for all pairwise comparisons. What do I mean by modeled
means and error intervals?

1. Modeled means and error intervals are estimated from the statistical
model. Many published plots are of raw means and error intervals,
meaning that the mean and error for each treatment level is computed
only using the response measures in that treatment level.

2. A modeled mean will often be equal to the raw mean, but this will not al-
ways be the case, for example if there are covariates in the model (Chapter
xxx).

3. Modeled error intervals are never the same as the raw error intervals,
and are commonly conspicuously different. Almost always, we should plot
modeled means and error intervals, since these represent the statistics that
are relevant to inference.

Fig. 4.2 also plots the raw count data as “jittered” black dots. “Showing the
data” is a pretty good feature of a plot because it allows the reader to get a sense
of the underlying sample size and distribution including outliers, which can be
used to mentally model check the published statistical analysis. For example,
the jittered dots in Fig. 4.2 suggest a heterogeneity of variances; specifically,
the treatment level with the largest mean has a conspicuously higher variance.
This pattern violates the assumptions of a general linear model and should raise
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a red flag to a reader if the researchers used a general linear model to analyze
the data.

What a mean-and-error plot fails to show, at least directly, are the effects. To
infer the effects from the plot, a reader must perform mental math – either
compute the difference or the ratio between pairs of means. This mental math
is easy enough if the comparisons are between individual treatment levels but
much harder if the comparisons are between pooled sets of treatment levels, for
example in a factorial experimental design. The mental math that is excessively
difficult is the reconstruction of some kind of error interval of the contrasts, for
example the 95% confidence intervals in Fig. ?? and it is this interval that is
necessary for a researcher to infer the range of biological consequences that are
compatible with the experiment. The inclusion of the p-values for all pairwise
comparisons gives the significance level of these contrasts, but of the kinds of
summary results that we could present (contrasts, error intervals, p-values), the
p-values are the least informative.

4.1.3 Combining Effects and Modeled mean and CI plots
– an Effects and response plot.

If one wants to show both effects and the data, then these can be combined.

If the means do not have any importance in understanding the results, the effects
plot can be combined with some kind of a plot summarizing the distribution,
such as a boxplot.

Regardless, the effects plot is the most important component as this is the
illustration of the story a researcher wants to tell.

4.2 Some comments on plot components

1. Alternatives to barplots make good plots for the supplement, not
the main paper. A prominent trend over the last few years has been the
replacement of bar plots with plots that “show the data”, such as jitter
plots or dot plots, or that show summaries of the distribution, such as
box plots or violin plots. These plot types were developed for exploratory
data analysis, not to communicate the results of experiments. All of these
plots fail to communicate the results of the statistical model and, because
of this, are inferior to an effects plot, and even a mean-and-error plot, if
the mean and error are the modeled values. Box/Violoin/Dot/Jitter plots
are a useful supplement to an effects plot, either combined with the effects
plot as above, or as a supplementary figure.

2. Standard error bars, computed from the raw data, can have absurd impli-
cations. For example, I sometimes see standard error bars cross y = 0 for
a response that cannot be negative, such as a count. Even if the standard



128 CHAPTER 4. PLOTTING MODELS

0.21

0.51

0.98

<0.0001

0.0077

0.0024
p−value

6.2

3.2

2.7

0 5 10 15 20

gf / wt

iap_mo / gf

iap_mo / wt

sox10 / gf

sox10 / iap_mo

sox10 / wt

Effect ratio

co
nt

ra
st

0

5

10

15

20

wt gf iap_mo sox10
donor

C
ou

nt

Figure 4.3: A pretty good plot
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Figure 4.4: Another pretty good plot
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error bar doesn’t cross zero, it is common to see standard error bars that
imply (but do not explicitly show) 95% confidence intervals that cross
zero, again for responses that cannot be negative. A standard error bar
or confidence interval that crosses zero implies that negative means are
compatible with the data. This is an absurd implication for responses
that cannot have negative values (or are “bounded by” zero). Explicit
or implicit error bars that cross zero are especially common for count re-
sponses with small means. If a researcher plots confidence intervals, these
should be computed using a method that avoids absurd implications, such
methods include the bootstrap and generalized linear models.

3. Stars add minimal value. Many researchers add star symbols to a plot
indicating the level of significance of a particular paired comparison. An
uncommon, but better, alternative would be to add the actual p-value
(as above). Adding a p-value (or stars) does communicate model results,
and so adds value to a mean-and-error or box/violin/jitter plot. However,
much more value would be added by simply reporting an effects plot or a
combined effects-and-response plot.

4.3 Working in R

A reasonable goal of any research project should be a script to generate the
final plots entirely within the R environment and not rely on external drawing
software to add finishing features. ggplot2 is one of the major plotting environ-
ments in R and the one that seems to have the strongest following, especially
among new R users. ggplot2 has the ability to generate extremely personalized
and finished plots. However, creating a plot with multiple layers (bars, lines,
error intervals, raw data points, p-values, text annotations) can often require
many hours of googling.

ggpubr is an extension to ggplot2 (it calls ggplot2 functions under the hood)
and provides many canned functions for producing the kinds of ggplots that
are published in biological journals. With one line of script, a researcher can
generate a publishable plot that is as good or better than many published plot.

Here I show how to add custom (ggplot2) features to a ggpubr plot

Throughout this book, ggpubr is used to create a basic plot and then additional
features are added to the basic plot using ggplot2 functions.

4.3.1 Unpooled SE bars and confidence intervals

ggplot2 and ggpubr default to unpooled error intervals (standard error bars
and confidence intervals).

https://ggplot2.tidyverse.org
https://cran.r-project.org/web/packages/ggpubr/index.html
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Figure 4.5: (A) Mean and 1 SE error bar. (B) Mean and 95% CI.

gg1 <- ggbarplot(data = exp2d,
x = "donor",
y = "count",
add = c("mean_se"),
fill = "steelblue"

)
gg2 <- ggbarplot(data = exp2d,

x = "donor",
y = "count",
add = c("mean_ci"),
fill = "steelblue"

)
plot_grid(gg1, gg2, ncol=2, labels="AUTO")

4.3.2 Adding bootstrap intervals

A bootstrap CI uses resamples of the data to estimate the interval and is a
better choice than the default CI for data such as counts and proportions. The
plot below uses ggpubr to create a stripchart of the data and the color of the
data points are “de-emphasized” – in order to emphasize the mean and CI – by
making them more transparent (using the argument alpha). alpha is added
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Figure 4.6: Sample means with bootstrapped 95% confidence intervals.

before the argument to add the mean in order to no de-emphasize the mean.

set.seed(1)
gg.boot <- ggstripchart(data=exp2d,

x = "donor",
y = "count",
alpha = 0.4,
add = "mean"

) +
stat_summary(fun.data = "mean_cl_boot",

geom = "errorbar",
width = 0.1) +

NULL
gg.boot

4.3.3 Adding modeled means and error intervals

This section is extremely important for implementing the work flow advocated
in this text. The goal is to plot the modeled means with some sort of error
interval, typically a confidence interval, and to show the data or a summary of
the data in a single plot. The procedure is
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1. fit the model
2. use the fit model to estimate the modeled means and confidence limits

using emmeans from the emmeans package.
3. use the emmean object to estimate the contrasts of interests using the

contrast function from emmeans.
4. Use the objects from steps 2 and 3 to plot the modeled means

Step 1: Fit the model. A negative binomial, generalized linear model with
log-link is fit to the count data.

m1 <- glm.nb(count ~ donor, data=exp2d)
coef(summary(m1))

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.9873867 0.2229971 4.4278004 9.519895e-06
## donorgf -0.8203326 0.4227008 -1.9406930 5.229553e-02
## donoriap_mo -0.1544775 0.3878578 -0.3982839 6.904209e-01
## donorsox10 1.0091672 0.2862047 3.5260325 4.218353e-04

• The estimates and SE are on the link scale, which means they are in
log-transformed space (or “log space”). Exponentiate these with exp(x)
to backstransform these to the the response scale which is the scale
of the measurement (number of neutrophils).

Step 2: Estimate the modeled means and confidence levels. The second
step is to pass the fit model object (m1) to emmeans to estimate the modeled
means.

m1.emm <- emmeans(m1, specs="donor", type="response")
m1.emm

## donor response SE df asymp.LCL asymp.UCL
## wt 2.68 0.599 Inf 1.734 4.16
## gf 1.18 0.424 Inf 0.585 2.39
## iap_mo 2.30 0.730 Inf 1.235 4.28
## sox10 7.36 1.321 Inf 5.181 10.47
##
## Confidence level used: 0.95
## Intervals are back-transformed from the log scale

• We specify the means that we want to estimate with “specs =”. Here, we
want to estimate the means of the levels of donor.

https://cran.r-project.org/web/packages/emmeans/index.html
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• Because the linear predictor of the model is on the log scale, we use the
“type” argument to specify that we want the means to be backtransformed
to the response scale, which is the scale of the measurement (number of
cells)

• It can be useful to convert the emmeans table m1.emm to a data.table (or
data.frame or tibble) using m1.emm <- data.table(m1.emm). Bug alert
If you do this, the object cannot be passed to the next step, the contrast
function. So if you want the emmeans table as a data.table, assign it to a
different name, for example m1.emm_dt <- data.table(m1.emm).

Step 3: Compute the contrasts, with p-values and confidence levels.
Contrasts among levels, or combinations of levels, are computed by passing the
emmeans object (m1.emm) to the contrast function.

m1.pairs <- contrast(m1.emm, method="revpairwise", adjust="none") %>%
summary(infer=c(TRUE, TRUE))

m1.pairs

## contrast ratio SE df asymp.LCL asymp.UCL z.ratio p.value
## gf / wt 0.440 0.186 Inf 0.192 1.01 -1.941 0.0523
## iap_mo / wt 0.857 0.332 Inf 0.401 1.83 -0.398 0.6904
## iap_mo / gf 1.946 0.933 Inf 0.761 4.98 1.389 0.1647
## sox10 / wt 2.743 0.785 Inf 1.566 4.81 3.526 0.0004
## sox10 / gf 6.231 2.501 Inf 2.837 13.68 4.558 <.0001
## sox10 / iap_mo 3.202 1.167 Inf 1.567 6.54 3.192 0.0014
##
## Confidence level used: 0.95
## Intervals are back-transformed from the log scale
## Tests are performed on the log scale

• Here, we set “method” to “revpairwise” in order to compute contrasts
among all pairs of levels of donor. There are m = 4 levels and so m(m −
1)/2 = 6 pairwise contrasts. “revpairwise” is used instead of “pairwise”
because the former sets the direction of the contrasts that include the
reference as non-reference level minus reference level.

• I use the “adjust” argument to specify no p-value adjustment for multiple
tests.

• the contrast object is then piped (%>%) to the summary function, where
I pass to the argument “infer”, that I want both the confidence intervals
(the first TRUE) and p-values (the second TRUE)

• this step isn’t necessary if we were plotting only modeled means and CIs
but 1) we almost always want contrasts with a fit model and so that is
done here as part of the uninterrupted work flow that this book advocates
and 2) we do use the p-values and CIs from this table (m1.pairs) in the
final plot below.
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• Bug alert again, the emmeans table m1.emm must be passed to contrast
as an emmeans object. If you have converted this object to a data.table,
you will get an error. See the last note in Step 2.

Step 4: Plot the modeled means and 95% error intervals.
The code below first creates the stripchart using the ggpubr function and
then adds the confidence intervals using geom_errorbar and means using
geom_point. The stripchart uses the data in the exp2d data.table. The
errorbar and mean use the values in m1.emm object created by the emmeans
function. The geom_errorbar and geom_point functions require an “aesthetic”
to tell ggplot which column contains the y values of the points to plot (the “x”
values are still in the column “donor”, which is a column in both the exp2d
data.table and m1.emm). The name of the column containing the “y” values
in m1.emm is “response”.

set.seed(1)
gg.nb <- ggstripchart(data=exp2d,

x="donor",
y="count",
alpha = 0.4) +

ylab("Neutrophil count") +
geom_errorbar(data=summary(m1.emm),

aes(y=response,
ymin=asymp.LCL,
ymax=asymp.UCL),

width=0.1) +
geom_point(data=summary(m1.emm),

aes(y=response),
size=2) +

NULL
gg.nb

Some notes on the plot code

• A column name passed to a ggpubr function must be in quotes but a
column name passed to a ggplot2 function cannot be in quotes

• Bug alert. The data passed to ggplot2 must be a data.frame. In order
for the ggplot2 functions to use the m1.emm object, the object has to be
passed as summary(m1.emm).

• Bug alert. Because the m1.emm table does not have a column named
“count”, which is the “y” column specified in ggstripchart, you must
supply a new “y” column name to the aes function of geom_errorbar
and geom_point. This is the name of the column in the emmeans table
containing the modeled means. In m1.emm, this name is “response” but
it can take different names in different emmeans tables, depending on the
fit model.
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Figure 4.7: Modeled means and 95% confidence interval computed from a neg-
ative binomial generalized linear model.

4.3.4 Adding p-values

In this section, I show how to add p-values to a ggpubr plot using
stat_compare_means. Because this function has only a limited set of
models that can be used to compute the p-values, I don’t find it very useful
and instead recommend adding custom p-values from the fit model (or from a
permutation test) using the method in the next section.

For this example, a “t.test” is used to compute the p-values. The mean and error
are the sample-based estimates because these, and not the modeled estimates,
are consistent with the t-test p-values.

compare_list <- list(c("sox10", "iap_mo"), c("sox10", "gf"), c("sox10", "wt"))
gg.sample <- ggstripchart(data=exp2d,

x="donor",
y="count",
alpha = 0.4,
add=c("mean_ci")) +

stat_compare_means(method = "t.test", comparisons=compare_list) +
ylab("Neutrophil count") +
NULL

gg.sample
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Figure 4.8: t-test p-values for the plot of sample means and CIs. The p-values
were computed using ggpubr’s function stat_compare_means.

Notes on the code

• The pairs to compare with a p-value are specified with comparison =.
The order of the pairs in the list function determine the order plotted
from bottom (lowest on the y-axis) to top (highest on the y-axis).

• It is important to know what exactly is being computed when
analyzing data and reporting results and “t test” is not sufficient to
know this. The t-test could be the classic t-test or a Welch test. In this
example, there are multiple comparisons and the standard error of the test
statistic could be the pooled estimate from the linear model, or a pair-
wise estimate computed separately for each pair. And, given the multiple
comparisons, the p-values could be adjusted or not. These kinds of ques-
tions can be checked with a function’s help page. ?stat_compare_means
doesn’t answer these questions but suggests compare_means, which also
doesn’t answer these questions. The script below has checks to see what
p-values the function is returning. Run it in your session by changing the
value of check_it to TRUE.

# checks on the p-value
# t-tests using SE pooled over all four groups
check_it <- FALSE
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if(check_it==TRUE){
m1.lm <- lm(count~donor, data=exp2d)
m1.lm.emm <- emmeans(m1.lm, specs="donor")
contrast(m1.lm.emm, method="trt.vs.ctrl", ref=4, adjust="none") # pooled SD

pairwise.t.test(exp2d$count, exp2d$donor, p.adjust.method="none", pool.sd=FALSE) # non-pooled SD
# compare
t.test(count~donor, data=exp2d[donor=="wt" | donor=="sox10"]) # matches, this is Welch t
t.test(count~donor, data=exp2d[donor=="wt" | donor=="sox10"], var.equal=TRUE)

}

So, the p-values returned by stat_compare_means(method="t.test") are com-
puted from independent (not pooled over the four groups) Welch t-tests.

4.3.5 Adding custom p-values

If we want to add permutation p-values to the plot with bootstrapped CIs (4.6
or add p-values from the generalized linear model to the plot of modeled means
and CIs (4.7, we need to use the function stat_pvalue_manual from the ggpubr
package. In order to implement this, we need to add a step to the work flow
path above

Step 5: Add group columns and a column of formatted p-values to
the contrast table

The stat_pvalue_manual function needs to read a data frame with a columns
labeled “group1” and “group2” that contain the pairs of levels to compare with
a plotted p-value and a column “p” containing the nicely formatted p-values
to add to the plot. There is no R function to create this table, but here is a
script to add these to the contrast object returned by the contrast function of
emmeans. In this example, I use m1.pairs from above and add the p-values to
the plot of modeled means and CIs (4.7.

First, we need these functions. Run these two lines to define the functions odd
and even

odd <- function(x) x%%2 != 0
even <- function(x) x%%2 == 0

Second, we need to use these functions to add the columns. There are several
R packages that provide functions to format p-values. Here, I use the function
pvalString from the lazyWeave package. This script also uses str_split from
the package stringr.

https://www.rdocumentation.org/packages/lazyWeave/versions/3.0.2/topics/pvalString
https://cran.r-project.org/web/packages/stringr/index.html
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# convert m1.pairs to a data.table and assign to a new object, in order to
# keep a clean copy of m1.pairs
m1.pvalues <- data.table(m1.pairs)
# if the linear model is from a glm with log link, use this
groups <- unlist(str_split(m1.pvalues$contrast, " / "))
# add the group1 and group 2 columns
m1.pvalues[, group1 := groups[odd(1:length(groups))]]
m1.pvalues[, group2 := groups[even(1:length(groups))]]
# create a column of nicely formatted p-values for display.
m1.pvalues[, p := pvalString(p.value)]

Bug alert notes on the script to build the p-value table, if you don’t want your
code to fail.

• The script to extract the pair of group labels str_split(m1.pvalues$contrast,
" / ")) has to be written so that the characters within the quotes
matches the characters separating the groups in the “contrast” col-
umn of the contrast table (here, m1.pairs). This will typically be
either a space-minus-space or a space-slash-space. If the model fit
is lm and the response is not transformed, then the correct code is
str_split(m1.pvalues$contrast, " - ")). Regardless, look at the
table to check.

• In step 3 above, we took the contrast table object and passed it to the func-
tion summary, which converts the contrast table object to a data.frame.
If we had skipped this step, data.table(m1.pairs) would fail. Instead,
we’d have to use data.table(summary(m1.pairs)).

Now we can add the p-value to the ggplot object gg.nb created above. This is
the beauty of a ggplot object (including those created by ggpubr), we can just
keep adding stuff to it.

gg.nb <- gg.nb +
stat_pvalue_manual(m1.pvalues[4:6,], # only show sox effects

label = "p",
y.position=c(31, 28, 25)) +

NULL
gg.nb

Notes on adding manual p-values to the plot:

• The pairs of groups to compare are specified by indexing the rows of
m1.pvalues. Above, I limit the comparisons to those in rows 4-6. If
I wanted to specify non-continous rows, I could use something like
m1.pvalues[c(1,3,5),], for example.
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Figure 4.9: Effects and means plot. Top panel: Effects (top panel) of treatments
on neutrophil count. Bottom panel: modeled means of treatment levels with
95% confidence intervals.

• The most manual part of adding manual p-values is setting the position for
the brackets using the “position” argument. The values in this argument
are the y-coordinates of the brackets. This may take some trial-and-error
to position the brackets satisfactorily.

4.3.5.1 Modeled error intervals of the effect

For the plot of effects, we use table of contrasts m1.pairs as the data.

gg.effects <- ggdotplot(data = m1.pairs,
x="contrast",
y="ratio",
color = "steelblue",
fill = "steelblue",
size=0.5) +

geom_errorbar(aes(x=contrast,
ymin=asymp.LCL,
ymax=asymp.UCL),

width=0.15,
color="steelblue") +
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ylab("Effect ratio") +
geom_hline(yintercept=1, linetype = 2) +
coord_flip() +

NULL
gg.effects
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4.3.5.2 Combining effects and response plots

The ggplots are combined using plot_grid from the package cowplot

gg.effects <- gg.effects + scale_y_continuous(position="right")
plot_grid(gg.effects, gg.nb, nrow=2, align = "v", rel_heights = c(1, 2))

https://cran.r-project.org/web/packages/cowplot/vignettes/introduction.html
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4.3.6 Plotting two factors

The data are from figure 6d. This solution requires computing either the raw
or modeled means and errors and adding these to a base ggpubr plot. Many
packages have summary statistics functions for means, standard deviations, and
standard errors. This is easily done by simply computing the statistics using
data.table functionality.

# compute raw statistics
# enclosing the line within parentheses prints the result to the console!
(exp6d.raw <- exp6d[!is.na(count), .(count=mean(count),

se=sd(count)/sqrt(.N)),
by=.(treatment, strain)]

)

## treatment strain count se
## 1: control wt 13.08333 2.310904
## 2: control sox10 45.61538 6.259903
## 3: transplant wt 16.35714 2.259552
## 4: transplant sox10 18.33333 4.536274

Modeled means, standard errors, and confidence limits are conveniently com-
puted using the emmeans (“estimated marginal means”) function from the em-
means package.



4.3. WORKING IN R 143

# modeled statsistics
m1 <- glm.nb(count ~ treatment*strain, data=exp6d)
(m1.emm <- data.table(summary(emmeans(m1, specs=c("treatment", "strain"), type="response"))))

## treatment strain response SE df asymp.LCL asymp.UCL
## 1: control wt 13.08333 2.032161 Inf 9.649528 17.73907
## 2: transplant wt 16.35714 2.289208 Inf 12.433129 21.51961
## 3: control sox10 45.61538 6.132974 Inf 35.048350 59.36837
## 4: transplant sox10 18.33333 3.871911 Inf 12.119140 27.73391

# change column "response" to "count" for the ggplot
setnames(m1.emm, old="response", new="count")

#pairs_i <- list(c("sox10", "iap_mo"), c("sox10", "gf"), c("sox10", "wt"))
pd = position_dodge(0.7)
ggbarplot(x="treatment",

y="count",
data=exp6d,
add=c("mean"),
color = "black",
fill = "strain",
palette = "jco",
position = pd,
size=0.5) +

#stat_compare_means(method = "t.test", comparisons=pairs_i) +
ylab("Neutrophil count") +
# geom_dotplot(aes(fill=strain),
# binaxis='y', stackdir='center', position=pd, show.legend=FALSE,
# color="grey") +
geom_point(aes(fill=strain), position=position_jitterdodge(jitter.width=0.2), show.legend=FALSE, alpha=0.5) +
geom_errorbar(data=m1.emm, aes(x=treatment, ymin=asymp.LCL, ymax=asymp.UCL, group=strain),

position=pd, width=0.1) +
NULL
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4.3.7 Interaction plot

#pairs_i <- list(c("sox10", "iap_mo"), c("sox10", "gf"), c("sox10", "wt"))
pd = position_dodge(0.2)
ggplot(data=m1.emm, aes(x=treatment, y=count, shape=strain, color=strain, group=strain)) +
geom_point(position=pd, size=3) +
geom_errorbar(data=m1.emm, aes(x=treatment, ymin=asymp.LCL, ymax=asymp.UCL, group=strain),position=pd, width=0.1) +
geom_line(position=pd) +
ylab("Neutrophil count") +
scale_color_jco() +
theme_pubr() +
NULL
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4.3.8 Plot components

4.3.8.1 Showing the data

If there are only a few cases per group, there is little reason to summarize the
distribution. Instead plot the individual points using a stripchart or a jitter plot

# sample 4 points from each group to make it a small n experiment
inc <- exp2d[, .(inc=sample(min(.I):max(.I), 4)), by=donor][, inc]
ggstripchart(x = "donor",

y = "count",
alpha = 0.5,
add = "mean",
data = exp2d[inc,])
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With more points, a stripchart can be okay but with too many points the
distribution might be obscured. Reasonable alternatives are a box plot, a violin
plot, and a dotplot.

gg1 <- ggstripchart(x = "donor",
y = "count",
fill="steelblue",
data = exp2d)

gg2 <- ggboxplot(x = "donor",
y = "count",
fill="steelblue",
data = exp2d)

gg3 <- ggviolin(x = "donor",
y = "count",
fill="steelblue",
data = exp2d)

gg4 <- ggdotplot(x = "donor",
y = "count",
fill="steelblue",
data = exp2d)

plot_grid(gg1, gg2, gg3, gg4, nrow=2)
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Chapter 5

Variability and Uncertainty
(Standard Deviations,
Standard Errors,
Confidence Intervals)

Uncertainty is the stuff of science. A major goal of statistics is measuring
uncertainty. What do we mean by uncertainty? Uncertainty is the error in
estimating a parameter, such as the mean of a sample, or the difference in
means between two experimental treatments, or the predicted response given
a certain change in conditions. Uncertainty is measured with a variance or
its square root, which is a standard deviation. The standard deviation of a
statistic is also (and more commonly) called a standard error.

Uncertainty emerges because of variability. In any introductory statistics class,
students are introduced to two measures of variability, the “standard deviation”
and the “standard error.” These terms are absolutely fundamental to statistics
– they are the start of everything else. Yet, many biology researchers confuse
these terms and certainly, introductory students do too.

When a research biologist uses the term “standard deviation,” they are probably
referring to the sample standard deviation which is a measure of the variability
of a sample. When a research biologist uses the term “standard error,” they are
probably referring to the standard error of a mean, but it could be the standard
error of another statistics, such as a difference between means or a regression
slope. An important point to remember and understand is that all standard
errors are standard deviations. This will make more sense soon.

151
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5.1 The sample standard deviation vs. the stan-
dard error of the mean

A standard deviation is the square root of the sampling variance.

5.1.1 Sample standard deviation

The sample standard deviation is a measure of the variability of a sample. For
example, were we to look at a histological section of skeletal muscle we would
see that the diameter of the fibers (the muscle cells) is variable. We could use
imaging software to measure the diameter of a sample of 100 cells and get a
distribution like this
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The mean of this sample is 69.4µm and the standard deviation is 2.8 µm. The
standard deviation is the square root of the variance, and so computed by

sy =

√∑n
i=1 (yi − y)2

n − 1
(5.1)

Memorize this equation. To understand the logic of this measure of variabil-
ity, note that yi − y is the deviation of the ith value from the sample mean,
so the numerator is the sum of squared deviations. The numerator is a sum
over n items and the denominator is n − 1 so the variance is (almost!) an av-
eraged squared deviation. More variable samples will have bigger deviations
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and, therefore, bigger average squared deviations. Since the standard deviation
is the square root of the variance, a standard deviation is the square root of
an average squared deviation. This makes it similar in value to the averaged
deviation (or average of the absolute values of the deviations since the average
deviation is, by definition of a mean, zero).

5.1.1.1 Notes on the variance and standard deviation

1. Variances are additive but standard deviations are not. This means that
the variance of the sum of two independent (uncorrelated) random vari-
ables is simply the sum of the variances of each of the variables. This is
important for many statistical analyses.

2. The units of variance are the square of the original units, which is awkward
for interpretation. The units of a standard deviation is the same as that
of the original variable, and so is much easier to interpet.

3. For variables that are approximately normally distributed, we can map
the standard deviation to the quantiles of the distribution. For example,
68% of the values are within one standard deviation of the mean, 95% of
the values are within two standard deviations, and 99% of the values are
within three standard deviations.

5.1.2 Standard error of the mean

A standard error of a statistic is a measure of the precision of the statistic. The
standard error of the mean is a measure of the precision of the estimate of the
mean. The standard error of a difference in means is a measure of the precision
of the estimate of the difference in means. The smaller the standard error, the
more precise the estimate. The standard error of the mean (SEM) is computed
as

SEM = sy√
n

(5.2)

The SEM is often denoted sȳ to indicate that it is a standard deviation of the
mean (ȳ).

5.1.2.1 The standard error of the mean can be thought of as a stan-
dard deviation of an infinitely long column of re-sampled
means

In what sense is a standard error a standard deviation? This is kinda weird. If
we sample 100 cells in the slide of muscle tissue and compute the mean diameter,
how can the mean have a standard deviation? There is only one value!
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To understand how the SEM is a standard deviation, imagine that we sample n
values from N(µ, σ2) (a normal distribution with mean µ and variance σ2. The
mean of our sample is an estimate of µ the standard deviation of sample is an
estimate of σ) an infinite number of times and each time, we write down the
mean of the new sample. The standard deviation of this infinitely long column
of means is the standard error of the mean. Our observed SEM is an estimate
of this true value because our observed standard deviation is an estimate of σ.

5.1.2.2 A standard deviation can be computed for any statistic –
these are all standard errors.

The SEM is only one kind of standard error. A standard deviation can be com-
puted for any statistic – these are all standard errors. For some statistics, such
as the mean, the standard error can be computed directly using an equation,
such as that for the SEM (equation (5.2)). For other statistics, a computer
intensive method known as the bootstrap is necessary to compute a standard
error. We will return to the bootstrap in Section 5.4.

5.1.2.3 Notes on standard errors

1. The units of a standard error are the units of the measured variable.
2. A standard error is proportional to sample variability (the sample stan-

dard deviation, sy) and inversely proportional to sample size (n). Sample
variability is a function of both natural variation (there really is variation
in diameter among fibers in the quadriceps muscle) and measurement er-
ror (imaging software with higher resolution can measure a diameter with
less error). Since the SEM is a measure of the precision of estimating a
mean, this means this precision will increase (or the SEM will decrease)
if 1) an investigator uses methods that reduce measurement error and 2)
an investigator computes the mean from a larger sample.

3. This last point (the SEM decreases with sample size) seems obvious when
looking at equation (5.2), since n is in the denominator. Of course n is also
in the denominator of equation (5.1) for the sample standard deviation but
the standard deviation does not decrease as sample size increases. First
this wouldn’t make any sense – variability is variability. A sample of
10,000 cell diameters should be no more variable than a sample of 100 cell
diameters (think about if you agree with this or not). Second, this should
also be obvious from equation (5.1). The standard deviation is the square
root of an average and averages don’t increase with the number of things
summed since both the the numerator (a sum) and denominator increase
with n.
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5.2 Using Google Sheets to generate fake data
to explore the standard error

In statistics we are interested in estimated parameters of a population using
measures from a sample. The goal in this section is to use Google Sheets (or
Microsoft Excel) to use fake data to discover the behavior of sampling and to
gain some intuition about uncertainty using standard errors.

5.2.1 Steps

1. Open Google Sheets
2. In cell A1 type “mu”. mu is the greek letter µ and is very common no-

tation for the poplation value (the TRUE value!) of the mean of some
hypothetical measure. In cell B1, insert some number as the value of µ.
Any number! It can be negative or positive.

3. In cell A2 type “sigma”. sigma is the greek letter σ. σ2 is very common
(universal!) notation for the population (TRUE) variance of some measure
or parameter. Notice that the true (population) values of the mean and
variance are greek letters. This is pretty standard in statistics. In cell B2,
insert some positive number (standard deviations are the positive square
roots of the variance).

4. In cell A8 type the number 1
5. In cell A9 insert the equation “=A8 + 1”. What is this equation doing? It

is adding the number 1 to to the value in the cell above, so the resulting
value should be 2.

6. In Cell B8, insert the equation ”=normsinv(rand())*$B$2 + $B$1”. The
first part of the equation creates a random normal variable with mean 0
and standard deviation 1. multiplication and addition transform this to
a random normal variable with mean µ and standard deviation σ (the
values you set in cells B1 and B2).

7. copy cell B8 and paste into cell B9. Now Higlight cells A9:B9 and copy the
equations down to row 107. You now have 100 random variables sampled
from a infinite population with mean µ and standard deviation σ.

8. In cell A4 write “mean 10”. In cell B4 insert the equation “=aver-
age(B8:B17)”. The resulting value is the sample mean of the first 10
random variables you created. Is the mean close to µ?

9. In cell A5 write “sd 10”. In cell B5 insert the equation “stdev(B8:B17)”.
The result is the sample standard deviation of the first 10 random
variables. Is this close to σ?

10. In cell A6 write “mean 100”. In cell B6 insert the equation “=aver-
age(B8:B107)”. The resulting value is the sample mean of the all 100
random variables you created. Is this mean closer to µ than mean 10?

11. In cell A7 write “sd 100”. In cell B7 insert the equation “=stdev(B8:B107)”.
The resulting value is the sample standard deviation of the all 100
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random variables you created. Is this SD closer to σ than sd 10?

The sample standard deviation is a measure of the variability of the sample.
The more spread out the sample (the further each value is from the mean), the
bigger the sample standard deviation. The sample standard deviation is most
often simply known as “The” standard deviation, which is a bit misleading since
there are many kinds of standard deviations!

Remember that your computed mean and standard deviations are estimates
computed from a sample. They are estimates of the true values µ and σ. Explore
the behavior of the sample mean and standard deviation by re-calculating the
spreadsheet. In Excel, a spreadsheet is re-calculated by simultaneously pressing
the command and equal key. In Google, command-R recalculates but is painfully
slow. Instead, if using Google Sheets, just type the number 1 into a blank cell,
and the sheet recalculates quickly. Do it again. And again.

Each time you re-calculate, a new set of random numbers are generated and
the new means and standard deviations are computed. Compare mean 10 and
mean 100 each re-calculation. Notice that these estimates are variable. They
change with each re-calculation. How variable is mean 10 compared to mean
100? The variability of the estimate of the mean is a measure of uncertainty
in the estimate. Are we more uncertain with mean 10 or with mean 100? This
variability is measured by a standard deviation. This standard deviation of
the mean is also called the standard error of the mean. Many researchers
are loose with terms and use “The” standard error to mean the standard error
of the mean, even though there are many kinds of standard errors. In general,
“standard error”” is abbreviated as “SE.” Sometimes “standard error of the
mean” is specifically abbreviated to “SEM.”

The standard error of the mean is a measure of the precision in estimating the
mean. The smaller the value the more precise the estimate. The standard error
of the mean is a standard deviation of the mean. This is kinda weird. If we
sample a population one time and compute a mean, how can the mean have a
standard deviation? There is only one value! And we compute this value using
the sample standard deviation: SEM = SD√

N
. To understand how the SEM is a

standard deviation, Imagine recalculating the spread sheet an infinite number of
times and each time, you write down the newly computed mean. The standard
error of the mean is the standard deviation of this infinitely long column of
means.

5.3 Using R to generate fake data to explore the
standard error

note that I use “standard deviation” to refer to the sample standard deviation
and “standard error” to refer to the standard error of the mean (again, we can
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compute standard errors as a standard deviation of any kind of estimate)

5.3.1 part I

In the exercise above, you used Google Sheets to generate p columns of fake
data. Each column had n elements, so the matrix of fake data was n × m (it is
standard in most fields to specify a matrix as rows by columns). This is much
easier to do in R and how much grows exponentially as the size of the matrix
grows.

To start, we just generate a n × p matrix of normal random numbers.

# R script to gain some intuition about standard deviation (sd) and standard error (se)
# you will probably need to install ggplot2 using library(ggplot2)
n <- 6 # sample size
p <- 100 # number of columns of fake data to generate
fake_data <- matrix(rnorm(n*p, mean=0, sd=1), nrow=n, ncol=p) # create a matrix

the 3rd line is the cool thing about R. In one line I’m creating a dataset with n
rows and p columns. Each column is a sample of the standard normal distribu-
tion which by definition has mean zero and standard deviation of 1. But, and
this is important, any sample from this distribution will not have exactly mean
zero and standard deviation of 1, because it’s a sample, the mean and standard
deviation will have some small errror from the truth. The line has two parts to
it: first I’m using the function “rnorm” (for random normal) to create a vector
of n*m random, normal deviates (draws from the random normal distribution)
and then I’m organizing these into a matrix (using the function “matrix”)

To compute the vector of means, standard deviations, and standard errors for
each column of fake_data, use the apply() function.

means <- apply(fake_data,2,mean) # the apply function is super useful
sds <- apply(fake_data,2,sd)
sems <- sds/sqrt(n)

apply() is a workhorse in many R scripts and is often used in R scripts in place
of a for-loop (see below) because it takes fewer lines of code.

The SEM is the standard deviation of the mean, so let’s see if the standard
deviation of the means is close to the true standard error. We sampled from a
normal distribution with SD=1 so the true standard is

1/sqrt(n)

## [1] 0.4082483
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and the standard deviation of the p means is

sd(means)

## [1] 0.3731974

Questions

1. how close is sd(means) to the true SE?
2. change p above to 1000. Now how close is sd(means) to the true SE?
3. change p above to 10,000. Now how close is sd(means) to the true SE?

5.3.2 part II - means

This is a visualization of the spread, or variability, of the sampled means

qplot(means)
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Compute the mean of the means

mean(means)

## [1] -0.039961
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Questions

1. Remember that the true mean is zero. How close, in general, are the
sampled means to the true mean. How variable are the means? How is
this quantified?

2. change n to 100, then replot. Are the means, in general, closer to the true
mean? How variable are the means now?

3. Is the mean estimated with n = 100 closer to the truth, in general, then
the mean estimated with n = 6?

4. Redo with n = 10000

5.3.3 part III - how do SD and SE change as sample size
(n) increases?

mean(sds)

## [1] 1.017144

Questions

1. what is the mean of the standard deviations when n=6 (set p=1000)
2. what is the mean of the standard deviations when n=100 (set p=1000)
3. when n = 1000? (set p=1000)
4. when n = 10000? (set p=1000)
5. how does the mean of the standard deviations change as n increases (does

it get smaller? or stay about the same size)
6. repeat the above with SEM

mean(sems)

## [1] 0.4152472

Congratulations, you have just done a Monte Carlo simulation!

5.3.4 Part IV – Generating fake data with for-loops

A for-loop is used to iterate a computation.
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n <- 6 # sample size
n_iter <- 10^5 # number of iterations of loop (equivalent to p)
means <- numeric(n_iter)
sds <- numeric(n_iter)
sems <- numeric(n_iter)
for(i in 1:n_iter){
y <- rnorm(n) # mean=0 and sd=1 are default so not necessary to specify
means[i] <- mean(y)
sds[i] <- sd(y)
sems[i] <- sd(y)/sqrt(n)

}
sd(means)

## [1] 0.4090702

mean(sems)

## [1] 0.3883867

Questions

1. What do sd(means) and mean(sems) converge to as n_iter is increased
from 100 to 1000 to 10,000?

2. Do they converge to the same number?
3. Should they?
4. What is the correct number?

Question number 4 is asking what is E(SEM), the “expected standard error of
the mean”. There is a very easy formula to compute this. What is it?

5.4 Bootstrapped standard errors

The bootstrap is certainly one of the most valuable tools invented in modern
statistics. But, it’s not only a useful tool for applied statistics, it’s a useful tool
for understanding statistics. Playing with a parametric bootstrap will almost
certainly induce an “aha, so that’s what statisticians mean by …” moment.

To understand the bootstrap, let’s review a standard error. A parametric stan-
dard error of a mean is the expected standard deviation of an infinite number of
means. A standard error of any statistic is the expected standard deviation of
that statistic. I highlight expected to emphasize that parametric standard errors
assume a certain distribution (not necessarily a Normal distribution, although
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the equation for the SEM in Equation (5.2) assumes a normal distribution if
the standard deviation is computed as in Equation (??)).

A bootstrapped standard error of a statistic is the empirical standard deviation
of the statistic from a finite number of samples. The basic algorithm for a
bootstrap is (here “the statistic” is the mean of the sample)

1. sample n values from a probability distribution
2. compute the mean
3. repeat step 1 and 2 many times
4. for a bootstrapped standard error, compute the standard deviation of the

set of means saved from each iteration of steps 1 and 2.

The probability distribution can come from two sources:

1. A parametric bootstrap uses samples from a parametric probability
distribution, such as a Normal distribution or a poisson distribution (re-
member, these are “parametric” because the distribution is completely
described by a set of parameters). A good question is why bother? In
general, one would use a parametric bootstrap for a statistic for which
there is no formula for the standard error, but the underlying data come
from a parametric probability distribution.

2. A non-parametric bootstrap uses resamples from the data. The data
are resampled with replacement. “Resample with replacement” means to
sample n times from the full set of observed values. If we were to do this
manually, we would i) write down each value of the original sample on
its own piece of paper and throw all pieces into a hat. ii) pick a paper
from the hat, add its value to sample i, and return the paper to the hat.
iii) repeat step ii n times, where n is the original sample size. The new
sample contains some values multiple times (papers that were picked out
of the hat more than once) and is missing some values (papers that were
not picked out in any of the n picks). A good question is, why bother?
A non-parametric bootstrap assumes no specific parametric probability
distribution but it does assume the distributio of the observed sample is
a good approximation of the true population distribution (in which case,
the probability of picking a certain value is a good approximation to the
true probability).

5.4.1 An example of bootstrapped standard errors using
vole data

Let’s use the vole data to explore the bootstrap and “resampling”. The data are
archived at Dryad Repository. Use the script in Section ?? to wrangle the data
into a usable format.
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1. URL: https://datadryad.org//resource/doi:10.5061/dryad.31cc4
2. file: RSBL-2013-0432 vole data.xlsx
3. sheet: COLD VOLES LIFESPAN

The data are the measured lifespans of the short-tailed field vole (Microtus
agrestis) under three different experimental treatments: vitamin E supplemen-
tation, vitamin C supplementation, and control (no vitamin supplementation).
Vitamins C and E are antioxidants, which are thought to be protective of basic
cell function since they bind to the cell-damaging reactive oxygen species that
result from cell metabolism.

Let’s compute the standard error of the mean of the control group lifespan using
both a parametric and a nonparametric bootstrap. To implement the algorithm
above using easy-to-understand code, I’ll first extract the set of lifespan values
for the control group and assign it to its own variable.

control_voles <- vole[treatment=="control", lifespan]

[treatment=="control", ] indexes the rows (that is, returns the row num-
bers) that satisfy the condtion treatment = "control". Or, put another way,
it selects the subset of rows that contain the value “control” in the column
“treatment”. [, lifespan] indexes the column labeled “lifespan”. Combined,
these two indices extract the values of the column “lifespan” in the subset of
rows that contain the value “control” in the column “treatment”. The resulting
vector of values is assigned to the variable “control_voles”.

5.4.1.1 parametric bootstrap

# we'll use these as parameters for parametric bootstrap
n <- length(control_voles)
mu <- mean(control_voles)
sigma <- sd(control_voles)

n_iter <- 1000 # number of bootstrap iterations, or p
means <- numeric(n_iter) # we will save the means each iteration to this

for(iter in 1:n_iter){ # this line sets up the number of iterations, p
fake_sample <- rnorm(n, mean=mu, sd=sigma)
means[iter] <- mean(fake_sample)

}
(se_para_boot <- sd(means))

## [1] 30.49765

https://datadryad.org//resource/doi:10.5061/dryad.31cc4
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5.4.1.2 non-parametric bootstrap

n_iter <- 1000 # number of bootstrap iterations, or p
means <- numeric(n_iter) # we will save the means each iteration to this
inc <- 1:n # inc indexes the elements to sample. By setting inc to 1:n prior to the loop, the first mean that is computed is the observed mean
for(iter in 1:n_iter){ # this line sets up the number of iterations, p
means[iter] <- mean(control_voles[inc]) # inc is the set of rows to include in the computation of the mean.
inc <- sample(1:n, replace=TRUE) # re-sample for the next iteration

}
(se_np_boot <- sd(means))

## [1] 32.47356

The parametric bootstrapped SEM is 30.5. The non-parametric bootstrapped
SEM is 32.47. Run these several times to get a sense how much variation there
is in the bootstrapped estimate of the SEM given the number of iterations.
Compute the parametric standard error using equation (5.2) and compare to
the bootstrapped values.

5.5 Confidence Interval

Here I introduce a confidence interval of a sample mean but the concept is
easily generalized to any parameter. The mean of the Control voles is 503.4
and the SE of the mean is 31.61. The SE is used to construct the lower and
upper boundary of a “1 - α” confidence interval using lower <- mean(x) +
qt(alpha/2, df = n-1)*se(x) and upper <- mean(x) + qt(1-(alpha/2),
df = n-1)*se(x).

(lower <- mean(control_voles) + qt(0.05/2, df=(n-1))*sd(control_voles)/sqrt(n))

## [1] 440.0464

(upper <- mean(control_voles) + qt(1 - 0.05/2, df=(n-1))*sd(control_voles)/sqrt(n))

## [1] 566.7393

The function qt maps a probability to a t-value – this is the opposite of a t test,
which maps a t-value to a probability. Sending α/2 and 1−α/2 to qt returns the
bounds of the confidence intereval on a standardized scale. Multiplying these
bounds by the standard error of the control vole lifespan pops the bounds onto
the scale of the control vole lifespans.
We can check our manual computation with the linear model
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confint(lm(control_voles ~ 1))

## 2.5 % 97.5 %
## (Intercept) 440.0464 566.7393

5.5.1 Interpretation of a confidence interval

Okay, so what is a confidence interval? A confidence interval of the mean is
a measure of the uncertainty in the estimate of the mean. A 95% confidence
interval has a 95% probability (in the sense of long-run frequency) of containing
the true mean. It is not correct to state that “there is a 95% probability that
the true mean lies within the interval”. These sound the same but they are
two different probabilities. The first (correct interpretation) is a probability
of a procedure – if we re-do this procedure (sample data, compute the mean,
and compute a 95% CI), 95% of these CIs will contain the true mean. The
second (incorrect interpretation) is a probability that a parameter (µ, the true
mean) lies within some range. The second (incorrect) interepretation of the CI
is correct only if we also assume that any value of the mean is equally probable
(Greenland xxx), an assumption that is absurd for almost any data.

Perhaps a more useful interpretation of a confidence interval is, a confidence
interval contains the range of true means that are compatible with the data,
in the sense that a t-test would not reject the null hypothesis of a difference
between the estimate and any value within the interval (this interpretation does
not imply anything about the true value) (Greenland xxx). The “compatibility”
interpretation is very useful because it implies that values outside of the interval
are less compatible with the data.

Let’s look at the confidence intervals of all three vole groups in light of the
“compatibility” interpretation.

vole_ci <- vole[, .(lifespan = mean(lifespan),
lo = mean(lifespan) + sd(lifespan)/sqrt(.N)*qt(.025, (.N-1)),
up = mean(lifespan) + sd(lifespan)/sqrt(.N)*qt(.975, (.N-1)),
N = .N),

by = .(treatment)]
ggplot(data=vole_ci, aes(x=treatment, y=lifespan)) +
geom_point() +
geom_errorbar(aes(x=treatment, ymin=lo, ymax=up),

width=0.1) +
NULL
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Chapter 6

P-values

A general perception of a “replication crisis” may thus reflect failure to recognize
that statistical tests not only test hypotheses, but countless assumptions and the
entire environment in which research takes place. Because of all the uncertain
and unknown assumptions that underpin statistical inferences, we should treat
inferential statistics as highly unstable local descriptions of relations between
assumptions and data, rather than as providing generalizable inferences about
hypotheses or models. And that means we should treat statistical results as being
much more incomplete and uncertain than is currently the norm.1

A p-value is a measure of the compatibility between observed data and the null
model. Here, “compatibility” is a probability, specifically, the probability of
sampling a test-statistic as or more extreme than the observed test statistic, if
all the assumptions used to compute the p-value are true.

To deconstruct what this means, and the implications of the meaning, let’s use
the experiment from Figure 2i in the study on the browning of white adipose
tissue in mice that was introduced in Chapter 2 (Analyzing experimental data
with a linear model).

Data source: ASK1 inhibits browning of white adipose tissue in obesity

A linear model with liver_tg as the response variable and treatment as the
single X-varaiable was fit to the data. Figure ?? is the plot of the modeled
means, 95% confidence intervals of the mean, and p-value of the significance
test of the effect of treatment on liver triacylglycerol.

The coefficients of the model, and the standard error, 95% confidence interval,
test-statistic, and p-value of each coefficient are shown in Table ?? Recall from
Chapter 2 that, with this model, the coefficient for the intercept term is the

1Amrhein, V., Trafimow, D. and Greenland, S., 2019. Inferential statistics as descrip-
tive statistics: There is no replication crisis if we don’t expect replication. The American
Statistician, 73(sup1), pp.262-270.

167

https://www.nature.com/articles/s41467-020-15483-7


168 CHAPTER 6. P-VALUES

0.012

20

40

60

80

100

ASK1F/F ASK1..adipo

Li
ve

r 
T

G
 (

µm
ol

 p
er

 g
 li

ve
r)

Figure 6.1: UCP1 expression, relative to the mean level in the control group.
Mean (circle) and 95% confidence interval (line) are shown. Unadjusted p-values
are from linear model with sh-RNA treatment and LPS treatment fully crossed.

mean liver_tg for the control group, which is the estimate of the true mean
for a mice with functional ASK1 protein. And the coefficient for the treatmen-
tASK1Δadipo term is the difference in means between the knockout and control
group, which is the estimate for the true effect of knocking out ASK1 in the
adipose tissue. The p-value for this “effect” term is 0.012. How do we interpret
this number?

Estimate

Std. Error

t value

Pr(>|t|)

2.5 %

97.5 %

(Intercept)

61.5

4.98

12.3
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0.000

50.4

72.6

treatmentASK1Δadipo

-21.6

7.05

-3.1

0.012

-37.3

-5.9

6.1 A p-value is the probability of sampling
a value as or more extreme than the test
statistic if sampling from a null distribution

The test statistic in the table above is a t-value. For this specific model, this
t-value is precisely the t-value one would get if they executed a classical Student
t-test on the two groups of liver TG values. Importantly, this is not generally
true. For many of the models in this text, a t-value is computed but this is not
the t-value that would be computed in a classical t-test.

When we do a t-test, we get a p-value. The probability returned in a t-test is
p = prob(t ≥ tobs|H0). Read this as “the p-value is the probability of observing
a t-value that is greater than or equal to the observed t-value, given the null
model is true.” Probability, in this text, is a long run frequency of sampling.
The specific probability associated with the effect of treatment on liver TG is
the long-run frequency of observing a t-value as big or bigger than the observed
t-value (the one you actually got with your data) if the null is true. Let’s parse
this into “long run frequency of observing a t-value as big or bigger than the
observed t-value” and “null is true”.

A thought experiment: You open a google sheet and insert 12 standard, normal
random deviates (so the true mean is zero and the true variance is one) in
Column A, rows 1-12. You arbitrarily assign the first six values (rows 1-6) to
treatment A and the second six values (rows 7-12) to treatment B. You use
the space immediately below these data to compute the mean of treatment
A, the mean of treatment B, the difference in means (A - B), and a t-value.
Unfortunately, google sheets doesn’t have a t-value function so you’d have to
compute this yourself. Or not, since this is a thought experiment. Now “fill
right” or copy and paste these functions into 999 new columns. You now have
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1000 t-tests. The expected value of the difference in means is zero (why?) but
the actual values will form a normal distribution about zero. Most will be close
to zero (either in the negative or positive direction) but some will be further
from zero. The expected t-value will also be zero (why?) and the distribution of
these 1000 t-values will look normal but the tails are a little fuller. This row of
t-values is a null distribution, because in generating the data we used the exact
same formula for the values assigned to A and the values assigned to B. Now
think of a t-value in your head, say 0.72 (remember that t-values will largely
range from about -3 to +3 although the theoretical range is −∞ to +∞. What
is the probability of observing a t of 0.72 or bigger if the null is true? Look at
the row of t-values! Count the number of t ≥ 0.72 and then divide by the total
number of t-values in the row (1000) and you have a probability computed as
a frequency. But remember the frequentist definition is the long run frequency,
or the expected frequency at the limit (when you’ve generated not 1000 or even
1,000,000 but an infinite number of columns and t-values).

Some asides to the thought experiment: First, why “as big or bigger” and not
just the probability of the value itself? The reason is that the probability of
finding the exact t is 1/infinity, which doesn’t do us much good. So instead we
compute the probability of finding t as big, or bigger, than our observed t. Sec-
ond, the t-test probability described above is a “one-tail probability”. Because
a difference can be both in the positive direction and the negative direction, we
usually want to count all the t ≥ 0.72 and the t ≤ −0.72 and then add these two
counts to compute the frequency of as extreme or more extreme values. This is
called a “two-tailed probability” because we find extremes at both tails of the
distribution. Third, we don’t really count t ≥ 0.72 but take advantage of the
beautiful mathematical properties of the theoretical t distribution, which allows
us to compute the frequentist probability (expected long range frequency) given
the t-value and the degrees of freedom using the t-distribution.

Now what do I mean with the phrase “null is true”? Most people equate “null
is true” with “no difference in means” but the phrase entails much more than
this. Effectively, the phrase is short for “all assumptions used to compute” the
p-value (see the Sander Greenland quote at the start of this chapter). A p-value
is based on modeling the real data with a theoretical sample in which all the
values were randomly sampled from the same distribution and the assignment
of the individual values to treatment was random. Random sampling from the
same distribution has three important consequences. First, random assignment
to treatment group means that the expected means of each group are the same,
or put differently, the expected difference in means between the assigned groups
is zero. Second, random assignment to treatment also means that the expected
variances of the two groups are equal. And third, random sampling means
that the values of each point are independent – we cannot predict the value
of one point knowing information about any other point. Here is what is
super important about this: a low p-value is more likely if any one of
these consequences is untrue about our data. A low p-value could arise from a
difference in true means, or it could arise from a difference in true variances, or
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it could arise if the Y values are not independent of each other. This is why
we need certain assumptions to make a p-value meaningful for empirical data.
By assuming independent error and homogenous (equal) variances in our two
samples, a low p-value is evidence of unequal means.

Let’s summarize: A pretty good definition of a p-value is: the long-run frequency
of observing a test-statistic as large or larger than the observed statistic, if the
null were true. A more succinct way to state this is

p = prob(t ≥ to|Ho) (6.1)

where t is a hypothetically sampled t-value from a null distribution, to is the
observed t-value, and Ho is the null hypothesis. Part of the null hypothesis is
the expected value of the parameter estimated is usually (but not always) zero
– this can be called the nil null. For example, if there is no ASK1 deletion
effect on liver TG levels, then the expected difference between the means of the
control and knockout mice is zero. Or,

E(Ȳknockout − Ȳcontrol|Ho) = 0.0 (6.2)

6.2 Pump your intuition – Creating a null dis-
tribution

The mean liver_tg in the knockout treatment is 21.6 µmol less than the mean
liver_tg in the control treatment. This is the measured effect, or the observed
differences in means. How confident are we in this effect? Certainly, if the
researchers did the experiment with two control (ASK1F/F) treatment groups,
they would measure some difference in their means simply because of finite
sampling (more specifically, the many, many random effects that contribute to
liver TG levels will differ between the two control groups). So let’s reframe the
question: are the observed differences unusually large compared to a distribution
of differences that would occur if there were no effect? That is, if the “null
were true”. To answer this, we compare our observed difference to this null
distribution. This comparison gives the probability (a long-run frequency) of
“sampling” a random difference from the null distribution of differences that is
as large, or larger, than the observed difference.

What is a null distribution? It is the distribution of a statistic (such as a
difference in means, or better, a t-value) if the null were true. Here, I hope to
pump your intuition by generating a null distribution that is relevant to the
ASK1 liver TG data. See if you can understand the script before reading the
explanation below.
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Figure 6.2: Null distribution for the difference in means of two samples from
the same, inifinitely large population with a true mean and standard deviation
equal to the observed mean and standard deviation of the ASK1 liver TG data.

seed <- 1
n_iter <- 10^5 # number of iterations

mu <- mean(fig_2i[treatment == "ASK1F/F", liver_tg])
sigma <- sd(fig_2i[treatment == "ASK1F/F", liver_tg])

n <- nrow((fig_2i[treatment == "ASK1F/F",]))

sample1 <- matrix(rnorm(n*n_iter, mean=mu, sd=sigma), nrow=n) # 100,000 samples (each size n)
sample2 <- matrix(rnorm(n*n_iter, mean=mu, sd=sigma), nrow=n) # 100,000 samples

d_null <- apply(sample2, 2, mean) - apply(sample1, 2, mean)

qplot(d_null)

What have we done above? We’ve simulated an infinitely large population of
mice that have a distribution of liver TG levels similar to that of the mice
assigned to the control (ASK1F/F) group. The true mean (µ) and standard
deviation (σ) of the simulated TG level are equal to the observed mean and
standard deviation of the TG levels of the control mice Then, the script:
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1. randomly sample 6 values from this population of simulated lifespans and
assign to sample1. We sample 6 values because that is the sample size of
our control in the experiment.

2. randomly sample 6 values from this population of simulated lifespans and
assign to sample2.

3. compute the difference Ȳsample2 − Ȳsample1.
4. repeat 1-3 100,000 times, each time saving the difference in means.
5. plot the distribution of the 100,000 differences using a histogram

The distribution of the differences is a null distribution. Notice that the mode
of the null distribution is at zero, and the mean (-0.03607) is close to zero (if we
had set n to infinity, the mean would be precisely zero). The expected difference
between the means of two random samples from the same population is, of
course, zero. Don’t gloss over this statement if that is not obvious. The tails
extend out to a little more than +20 and -20. What this means is that it would
be uncommon to randomly sample a value from this distribution of differences
as or more extreme than our observed difference, -21.6. By “more extreme”, I
mean any value more negative than -21.6 or more postive than 21.6. So it would
be uncommon to sample a value from this distribution whose absolute value is
as or more extreme than 21.6. How uncommon would this be?

diff_obs <- fig_2i_m1_coef["treatmentASK1Δadipo", "Estimate"]
null_diff_extreme <- which(abs(d_null) > abs(diff_obs))
n_extreme <- length(null_diff_extreme)
(p_d_null = n_extreme/n_iter)

## [1] 0.00519

In the 100,000 runs, only 519 generated data with an absolute difference as
large or larger than 21.6 (an “absolute difference” is the absoute value of the
difference). The frequency of differences as large or larger than our observed
difference is 0.00519. This frequency is the probability of sampling a difference
as or more extreme than the observed difference “under the null”. It is a p-value,
but it is not the p-value in the coefficient table. This is because the p-value in the
coefficient table is computed from a distribution of t-values, not raw differences.
This raises the question, what is a t-distribution, and a t-value, more generally?

6.3 A null distribution of t-values – the t distri-
bution

A t-test is a test of differences between two values. These could be

1. the difference between the means of two samples (a “two-sample” t-test)
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2. the difference between a mean of a sample and some pre-specified value
(a “one-sample” t-test)

3. the difference between a coefficient from a linear model and zero

A t-test compares an observed t-value to a t-distribution. The null distribution
introduced above was a distribution of mean differences under the null. A
distribution of mean differences under the null is very specific to the mean
and standard deviation of the population modeled and the sample size of the
experiment. This isn’t generally useful, since it will be unique to every study
(at least it wasn’t generally useful prior to the time of fast computers. One
could, and some statisticians do, compute p-values using the algorithm above).
A t-distribution is a way of transforming a null distribution of mean differences,
which is unique to the study, into a distribution that is a function of sample
size only.
A t-distribution is a distribution of t-values under the null, where a t-value is a
difference standardized by its standard error. For a two-sample t-test, this is

t = ȳ2 − ȳ1

SEȳ2−ȳ1

(6.3)

The numerator is the effect while the denominator is the precision of the
estimate. Like many test statistics, a t-value is a signal-to-noise ratio – the
effect is the signal and the SE of the difference is the noise.
A t distribution looks like a standard, normal distribution, except the tails
are heavy, meaning there are more large-ish values than the normal. Like the
standard normal distribution, large t-values are unlikely under the null and,
therefore, a large t has a low probability – or p-value – under the null.
Looking at the equation for the two-sample t-test above, it is easy to see that
three features of an experiment are associated with large t and small p-values:
1) big effect size (the numerator of the equation), 2) small sample standard
deviations (which results in small standard errors of the difference, the denomi-
nator of equation (6.3), and 3) large sample size (which results in small standard
errors of the difference). As a quick-and-dirty generalization, absolute t-values
greater than 3 are uncommon if the null is true.
The p-value for a t-test comes from comparing the observed t to a null t distri-
bution and “counting” the values that are more extreme than the observed t.
The p-value is the relative frequency of these more extreme values (relative to
the total number of t-values in the distribution). I have “counting” in quotes
because nothing is really counted – there are an infinite number of t-values in
the t-distribution. Instead, the t-distribution function is integrated to compute
the fraction of the total area under the curve with t-values more extreme than
the observed value. In a two-tailed test, this fraction includes both tails (pos-
itive t-values more positive than |t|observed and negative t-values more negative
than −|t|observed.
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Let’s modify the simulation of a null distribution of mean differences to generate
a null distribution of t-values. I show the script, but don’t just cut and paste
the code. Spend time thinking about what the each line does. Explore it by
copying parts and pasting into console.

seed <- 1
n_iter <- 10^5 # number of iterations

mu <- mean(fig_2i[treatment == "ASK1F/F", liver_tg])
sigma <- sd(fig_2i[treatment == "ASK1F/F", liver_tg])

n <- nrow((fig_2i[treatment == "ASK1F/F",]))

sample1 <- matrix(rnorm(n*n_iter, mean=mu, sd=sigma), nrow=n) # 100,000 samples (each size n)
sample2 <- matrix(rnorm(n*n_iter, mean=mu, sd=sigma), nrow=n) # 100,000 samples

#way no. 1 - compute the t-tests manually
mean_diffs <- apply(sample2, 2, mean) - apply(sample1, 2, mean) # what is the apply function returning?
se_mean_diffs <- sqrt(apply(sample2, 2, sd)^2/n + apply(sample1, 2, sd)^2/n)
t_dis <- mean_diffs/se_mean_diffs

#way no.2 - compute the t-tests using the linear model
fake_data <- rbind(sample1, sample2)
treatment <- rep(c("control", "knockout"), each = n)
t_dis2 <- numeric(n_iter)
for(iter in 1:n_iter){
y <- fake_data[, iter]
fake_m1 <- lm(y ~ treatment)
t_dis2[iter] <- coef(summary(fake_m1))["treatmentknockout", "t value"]

}

# plot the null distribution of t-values
qplot(t_dis2)

Now let’s use this null distribution of t-values to compute a p-value

# what is the p-value?
# the p-value is the number of t-values in t_dis that are as large
# or larger than the observed t. Large, negative t-values
# are as unlikely under the null as large, positive t-values.
# To account for this, we want to use absolute values in our counts
# this is a "two-tail test"

# first assign the observed t-value
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Figure 6.3: Null distribution of t-values. The simulation generated 10,000 t-tests
with a true null.

t_obs <- fig_2i_m1_coef["treatmentASK1Δadipo", "t value"]

# now count the number of t-values in t_dis as big or bigger than this
# include the observed value as one of these (so add 1 to the count)
count <- sum(abs(t_dis) >= abs(t_obs))

# the p-value is the frequency of t_dis >= t_obs, so divide
# count by the total number of t-values in the distribution.
# Again add one since the observed value counts as a sample
(p_ASK1Δadipo <- count/(n_iter))

## [1] 0.01174

Hey that looks pretty good! Compare this to the p-value in the coefficient table
above.
A p-value can be computed by counting the number of simulated t-values, in-
cluding the observed value, that are equal to or more extreme (in either the
positive or negative direction) than the observed t. Including the observed t,
there are 1174 values that are more extreme than that observed. An approx-
imate measure of p is this count divided by 100,001 (why is 1 added to the
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denominator?), which is 0.01174. This simulation-based p-value is very (very!)
close to that computed from the observed t-test.

6.4 P-values from the perspective of permuta-
tion

A very intuitive way to think about p-values as a frequency is random per-
mutation. A permutation is a re-arrangement of items. If there is an effect of
ASK1 deletion on liver TG, then the arrangement of the values in the treatment
column matters. If there is no effect of ASK1 deletion on liver TG, then the
arrangement of the values in the treatment column does not matter.

Think about the structure of the liver TG data: there are two columns,
treatment, which contains the assigned treatment, and liver_tg. The values
in the treatment column were randomly assigned prior to the start of the
experiment. If there is a negative effect of ASK1 deletion on liver TG, then
assginment matters – the values in the liver_tg column for the ASK1Δadipo
rows will be smaller than, on average, the values in the ASK1F/F rows.
That is, a specific value of aliver_tg is what it is because of the value of
treatement in the same row. Assignment to ASK1F/F or ASK1Δadipo
changes the expected value of liver_tg. But, if there were no true effect, then
assignment to ASK1F/F or ASK1Δadipo does not change the expected value
of liver_tg. The expected value of every cell in the liver_tg column would
be the same regardless of what is in the treatment column.

In our thought experiment, let’s leave the values in the treatment column be,
and just randomly re-arrange or permute the values in the liver_tg column.
What is the new expected diference in liver TG between the rows assigned to
ASK1F/F and the rows assigned to ASK1Δadipo? The expected difference is
Zero. Because the liver_tg values were randomly re-arranged, they cannot be
caused by treatment assignment.

A permutation is a random re-arrangement of values in a column. Consider
the many thousands of permutations of the values in the liver_tg column.
A difference in means can be computed from each of these permuations and a
distribution of differences can be generated. Is the observed difference extreme
relative to the other values in this distribution? This is a permutation test – it
compares an observed statistic to a distribution of the statistic computed over
many thousands of permutations.

Let’s create a script for a permutation test

set.seed(1)
n_iter <- 5000 # number of random permutations
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y <- fig_2i[, liver_tg]
x <- fig_2i[, treatment]

d_dist_perm <- numeric(n_iter)

for(iter in 1:n_iter){
xbar1 <- mean(y[x == "ASK1F/F"])
xbar2 <- mean(y[x == "ASK1Δadipo"])

d_dist_perm[iter] <- xbar2 - xbar1

# permute y
y <- sample(y, replace=FALSE)
# note that, when i=1, the first "permutation" is the original arrangement

}

qplot(d_dist_perm)
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From this distribution of distances generated by random permuation of the
response, we can compute a permutation p-value.

{rpvalue-d-dist-perm-p } (p_permute <- sum(abs(d_dist_perm) >=
abs(d_dist_perm[1]))/n_iter)
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6.5 Parametric vs. non-parametric statistics

A statistic such as the difference in mean liver TG between ASK1Δadipo and
ASK1F/F groups does not have “a” p-value. A p-value is the probability of
observing an event given a model of how the event was generated. For the p-value
in the coefficient table above, the event is sampling a t-value from a modeled t
distribution that is as or more extreme than the observed t-value. The model
generating the null distribution of t-values includes random sampling from a
distribution that is defined by specific parameters (in this case, a mean and a
variance), these parameters define the location and shape of the distribution of
values that could be sampled. A p-value computed from a distribution that is
defined by a set of parameters is a parametric p-value.
For the p-value computed using the permutation test, the event is the probability
of of computing a difference of means from a randomly permuted set of Y as
or more extreme than the observed difference of means. The distribution of
differences from the permutated Y data sets was not generated by any of the
known distributions (normal, Poisson, binomial, etc.) given a specific value of
parameters. Consequently, the permutation p-value is non-parametric.
The validity of all p-values depends on a set of model assumptions, which differ
from model to model. The permutation p-value has fewer assumptions than a
parametric p-value because no distribution is assumed (the permutation p-value
is distribution-free).

6.6 frequentist probability and the interpreta-
tion of p-values

6.6.1 Background

There are at least three different meanings of probability.

1. subjective probability is the probability that an individual assigns to
an event based on prior knowledge and the kinds of information considered
reliable evidence. For example, if I asked a sample of students, what is the
probability that a 30c homeopathic medicine could clear a Streptococcus
infection from your respiratory system, their answers would differ because
of variation in their knowledge of basic science, including chemistry and
physics, their knowledge of what homeopathic medicines are, and how
they weight different kinds of evidence.

2. classical probability is simply one divided by the number of possible
unique events. For example, with a six-sided die, there are six possible
unique events. The probability of rolling a 2 is 1

6 and the probability of
rolling an odd number is 1

2 .
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3. frequentist probability is based on the concept of long run fre-
quency. If I roll a die 10 times, the frequency of rolling a 2 will be
approximately 1

6 . If I roll the die 100 times, the frequency of rolling a two
will be closer to 1

6 . If I roll the die 1000 times, the frequency of rolling the
die will be even closer to 1

6 . So the frequentist definition is the expected
frequency given an infinite number of rolls. For events with continous
outcomes, a frequentist probability is the long run frquency of observing
an outcome equal to or more extreme that that observed.

6.6.2 This book covers frequentist approaches to statisti-
cal modeling and when a probability arises, such as
the p-value of a test statistic, this will be a frequen-
tist probability.

When we do a t-test, we get a p-value. There are several ways to think about
this probability. The most compact way is P (data|null), which is literally read
as the probability of the data given the null (or “conditional” on the null), but
is really short for the probability of the data, or something more extreme than
the data, given that the null hypothesis is true. The “probability of the data” is
kinda vague. More specifically, we mean the probability of some statistic about
the data such as the difference in means between group A and group B or the
t-value associated with this difference. So, a bit more formally, the probability
returned in a t-test is prob(t ≥ tobs|H0). This is the long run frequency of
observing a t-value as big or bigger than the observed t-value (the one you
actually got with your data) if the null is true. Let’s parse this into “long run
frequency of observing a t-value as big or bigger than the observed t-value” and
“null is true”.

A thought experiment: You open a google sheet and insert 12 standard, normal
random deviates (so the true mean is zero and the true variance is one) in
Column A, rows 1-12. You arbitrarily assign the first six values (rows 1-6) to
treatment A and the second six values (rows 7-12) to treatment B. You use
the space immediately below these data to compute the mean of treatment
A, the mean of treatment B, the difference in means (A - B), and a t-value.
Unfortunately, google sheets doesn’t have a t-value function so you’d have to
compute this yourself. Or not, since this is a thought experiment. Now “fill
right” or copy and paste these functions into 999 new columns. You now have
1000 t tests. The expected value of the difference in means is zero (why?) but
the actual values will form a normal distribution about zero. Most will be close
to zero (either in the negative or positive direction) but some will be further
from zero. The expected t-value will also be zero (why?) and the distribution of
these 1000 t-values will look normal but the tails are a little fuller. This row of
t-values is a null distribution, because in generating the data we used the exact
same formula for the values assigned to A and the values assigned to B. Now
think of a t-value in your head, say 0.72 (remember that t-values will largely
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range from about -3 to +3 although the theoretical range is −∞ to +∞. What
is the probability of observing a t of 0.72 or bigger if the null is true? Look at
the row of t-values! Count the number of t ≥ 0.72 and then divide by the total
number of t-values in the row (1000) and you have a probability computed as
a frequency. But remember the frequentist definition is the long run frequency,
or the expected frequency at the limit (when you’ve generated not 1000 or even
1,000,000 but an infinite number of columns and t-values).

Some asides to the thought experiment: First, why “as big or bigger” and not
just the probability of the value itself? The reason is that the probability of
finding the exact t is 1/infinity, which doesn’t do us much good. So instead we
compute the probability of finding t as big, or bigger, than our observed t. Sec-
ond, the t-test probability described above is a “one-tail probability”. Because
a difference can be both in the positive direction and the negative direction, we
usually want to count all the t ≥ 0.72 and the t ≤ −0.72 and then add these two
counts to compute the frequency of as extreme or more extreme values. This is
called a “two-tailed probability” because we find extremes at both tails of the
distribution. Third, we don’t really count t ≥ 0.72 but take advantage of the
beautiful mathematical properties of the theoretical t distribution, which allows
us to compute the frequentist probability (expected long range frequency) given
the t-value and the degrees of freedom using the t-distribution.

Now what do I mean with the phrase “null is true”? Most people equate “null is
true” with “no difference in means” but the phrase entails much more than this.
Effectively, the phrase means that the p-value is based on modeling the real
data with a theoretical sample in which all the points were randomly sampled
from the same distribution and that the assignment of the individual points
to treatment was random. This model means the theoretical sample has three
properties: First, random assignment to treatment after sampling from the same
distribution means that the expected means are the same, or put differently,
the expected difference in means between the assigned groups is zero. Second,
random assignment to treatment after sampling from the same distribution also
means that the expected variances of the two groups are equal. And third,
random sampling means that the values of each point are independent – we
cannot predict the value of one point knowing information about any other
point. Here is what is super important about this: if we get a really
low p-value, any one of these consequences may be untrue about our data, for
example it could be that the true means of the two treatment groups really are
different, or it could mean it is the variances that differ between the two groups,
or it could mean that the data (or technically, the errors) are not independent
of each other. This is why we need certain assumptions to make a p-value
meaningful for empirical data. By assuming independent error and homogenous
(equal) variances in our two samples, a low p-value is evidence of unequal means.
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6.6.3 Two interpretations of the p-value

Since we want to be working scientists who want to use p-values as a tool, we
need to know how to interpret (or use) the p-value to make reasonable inferences
and how to avoid mis-interpreting the p-value and making unreasonable or even
incorrect inferences. Ronald Fisher, the inventor of frequentist statistics, devel-
oped an interpretation of the p-value that is probably most useful for academic
and applied research programs. Neyman and Pearson (Neyman-Pearson) gave
the p-value a different interpretation, one that is probably most useful for in-
dustrial quality control. Today’s biology researchers use an interpretation that
is an odd hybrid of the two, which often leads to silly inference. Regardless,
understanding the distinction between Fisher and Neyman-Pearson will inform
how we write up our results in a manuscript. I’ll describe these in the context
of the two-sample t-test.

6.6.3.1 Fisher’s interpretation

Fisher was working in the context of an agricultural experiments, the goal of
which was to discover better agricultural practices. Does this new fertilizer work
better than our old fertilizer? This is the context of much of modern biosciences
and clinical medicine. Fisher thought of p as evidence against the null; the
smaller the p the stronger the evidence that the two sampling distributions
differ, which, in an experimental context, implies a treatment effect. If an
experiment results in a large p-value, we can move on and test other fertilizers.
If an experiment results in a small p-value, we want to pursue this new fertilizer
more. Do more experiments! Fisher never thought of a single experiment as
definitive. The decision to move on or pursue is only partly informed by the
p-value and Fisher offered no rule about what p-value lies on the threshold of
this decision. When pressed, Fisher might say that p = 0.05 is a reasonable
threshold.

6.6.3.2 Neyman-Pearson interpretation

Neyman-Pearson thought of p as the necessary and sufficient information to
make a decision between accepting the null (or at least not rejecting the null)
or rejecting the null and accepting an alternative hypothesis. This decision
balances two sorts of errors: Type I (false positives), which they called α, and
Type II (false negatives), which they called β. A false positive means the null
was rejected but there really is no effect. A false negative means that the null
was not rejected but there actually is an effect. α is set by the experimenter
and is the long-term frequency (or “rate”) of false positives when the null is
true that the experimenters are willing to accept. This is easily understood in
the context of manufacturing. I’ve just made a batch of beer that I now need to
ship. I sample 10 cans and test the quality against a norm. If p < α, we reject
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the null in favor of the alternative – something may be wrong with the batch,
it differs from the norm. We throw the beer away. If p > α, we do not reject
the null, nor the beer! We ship it.

After setting α, the experimenter designs the experiment to achieve an accept-
able rate of β. Since β is the false negative rate then 1 − β is the rate of not
making a false negative error, that is, the rate of rejecting the null when there
really is an effect. This is called the power of the experiment. An experiment
with high power will have a low probability of a Type II error. An experiment
with low power will have a high probability of a Type II error. Power is partly
determined by sample size, the bigger the sample the smaller the p-value, all
other things equal (think about why in the context of the formula for the t-
value). Power is a function of error variance, both the natural variance and
the component added because of measurement error (think about why in the
context of the formula for the t-value). Power is also a function of α. If we
set a low α (say, α = 0.01), the test is conservative. We are more likely to fail
to reject the null even if the null is false. A researcher can increase power by
increasing sample size, using clever strategies to reduce measurement error, or
increasing alpha.

An experimenter sets α, computes the sample size needed to achieve a certain
level of power (1 − β), and then does the experiment. A thoughtful researcher
will set α after considering and weighing the pros and cons of different levels of
α. If false positives have costly consequences (expense, time, deleterious side-
effects), then set α to a low value, such as 0.01 or 0.001. For example, if an initial
screen has identified a previously unknown candidate that potentially functions
in the focal system of the researcher, then a researcher might decide to set a low
α (0.001) in the initial tests of this candidate to avoid devoting time, personel,
and expense to chasing a phantom (a false-positive candidate). If false positives
have trivial consequences, then set α to a high value, such as 0.05, or 0.1, or even
0.2. For example, if the initial tests of a candidate in a functional system are
cheap and fast to construct, then a researcher might choose to set a high α for
the screen that identifies candidates. False positive candidates don’t cost the lab
much effort to identify them as false, but missing positive candidates because of
a small α (which results in low power) at the screen stage costs the researcher
the discovery of a potentially exciting coponent of the functional system.

In Fisher’s interpretation, there is no α, no β, no alternative hypothesis, and no
sharp decision rule. Instead, in Fisher, p is a continuous measure of evidence
against the null and its value is interpreted subjectively by an informed and
knowledgeable expert using additional information to make decisions. Neyman-
Pearson rejected Fisher’s conception of p as evidence against the null arguing
that a single experimental p-value is too noisy without embedding it into a more
formal system of of decision making that maintains long-term type I error rates
at α, given a certain power. In Neyman-Pearson, p is compared to a threshold,
α and this alone makes the decision. In Neyman-Pearson, p is not treated as
continuous information. p = 0.00000001 is no more evidence to use to reject
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the null than p = 0.049.

6.6.4 NHST

Most biology researchers today interpret p using a combination of Fisher and
Neyman-Pearson concepts in what has become known as Null Hypothesis Sig-
nificance Testing (NHST).

1. Nearly all papers in biology either explicitly state something like “P values
< 0.05 were considered to be statistically significant” or implicitly use 0.05
as the “level of significance” (α). Comparing a p-value to a pre-defined α
is Neyman-Pearson.

2. Unlike Neyman-Pearson, there is no evidence that researchers are thought-
fully considering the level of α for each experiment. Instead, researchers
mindlessly choose α = 0.05 because this is what everyone else uses.

3. Unlike Neyman-Pearson, but somewhat in the spirit of Fisher, researchers,
journals, and textbooks, advocate trichotomizing a statistically significant
p into “significance bins” – three asterisks for p < 0.001, two asterisks for
0.001 < p < 0.01, and one asterisk for 0.01 < p < 0.05). This is not
Neyman-Pearson. Again, Neyman-Pearson developed a system to control
the long-run frequency of Type I error, which is controled by a strict use
of α. If an observed p-value is in the *** bin or the * bin is meaningless
in a system using Neyman-Pearson. There is only “accept” (p >= α) or
“reject” (p < α).

4. Many researchers report exact p-values when p < 0.05 but “n.s.” (not
significant) when p > 0.05. Reporting exact p-values is Fisher. Reporting
n.s. is Neyman-Pearson.

5. Many researchers further polychomotomize the p-value space just above
0.05 by using language such as “marginally significant”. If Neyman-
Pearson and Fisher got together and spawned a love-child, this would be
it.

6.7 Some major misconceptions of the p-value

Setting the type I error rate α to 0.05 is so pervasive that I’m going to simply
use “0.05” instead of “alpha” in discussing misconceptions.

6.7.1 Misconception: p is the probability that the null is
true and 1 − p is probability that the alternative is
true

Many researchers believe that if p > 0.05 then “there is no effect.” A frequentist
hypothesis test cannot show that an effect doesn’t exist, only that the null has
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a low probablity of producing a test statistic as extreme or more extreme than
the observed effect.

Many researchers believe that if p < 0.05 then “there is an effect.” Again, a
frequentist hypothesis test cannot show that an effect exists, only that the null
has a low probablity of producing a test statistic as extreme or more extreme
than the observed effect.

1. The statement “There is no effect of predators on feeding behavior” is not
a valid conclusion of a frequentist hypothesis test.

2. The statement “We found no effect of predators on feeding behavior” is
misleading because a frequentist hypothesis test can neither find an effect
nor find no effect.

The two errors above are gross misconceptions that are pervasive in the biology
literature. A more subtle issue is the belief that a low p-value shows that the
researcher’s explanatory hypothesis is correct. For example, researchers believe
the result “the prey fish fed 14.2 (95% CI: 9.2, 19.2) minutes shorter in the
presence of the predator fish” confirms their hypothesis that prey modulate
feeding duration as a function of their ability to assess the risk of predation.
Some alternative explanations:

1. The predator fish also competes with the prey fish for the prey fish’s food
and with less food the prey fish spends less time feeding because it gives
up when food density drops below some amount.

2. The predator fish is introduced to the prey tank by hand and odorant
molecules from the researcher’s hands are detected by the prey and the
prey reduces feeding duration because of these odorants.

Importantly, no single experiment confirms an explanatory hypothesis. Instead,
alternative explanations require multiple experiments with different controls to
“rigrously probe” the preferred hypothesis.

6.7.2 Misconception: a p-value is repeatable

Many researchers believe that a p-value is a precise measure – that if the exper-
iment were replicated, a similar p would result. This belief requires at least two
misconceptions. First, if the null were true, then any p-value is equally likely.
p = 0.00137 is just as likely as p = 0.492. In other words, if the null were true,
the p-value is not replicable at all! Second, the p-value is highly dependent on
the sample, and can be highly variable among replications, but there is no true
p-value, so there can be no estimate or standard error. Let’s explore these.
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6.7.2.1 What is the distribution of p-values under the null?

I often ask students, “if the null were true, what is the most likely p-value?” or
“if the null were true, what kind of p-values would we expect, that is what is
the expected distribution”. A common answer is p = 0.5 is the most likely value
and something like a normal curve, except the tails abruptly stop at 0 and 1, is
the expected distribution.
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6.7.2.2 The incredible inconsistency of the p-value

How replicable is the conclusion of an experiment if the p-value for a t-test
is 0.03? If our conclusion is based on p < 0.05, then the conclusion is not
very replicable. The simulation below shows the results of 15 replicates of an
experiment with true power of 40%. There are five “significant” results (one
less than expected) but several replicates have very high p-values.

6.7.3 Misconception: 0.05 is the lifetime rate of false dis-
coveries

An important and widespread misconception is that if a researcher consistently
uses α = 0.05, then the frequency of incorrectly concluding an effect exists, or
“discovering” an effect, over the lifetime of the researcher, will be 5%. This is
incorrect. α is the rate of false positive if the null hypothesis is true, so our
lifetime “false discovery” rate could only be 5% if everything we ever tested has
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Figure 6.4: Variability of p-values when the power is 0.4

no true effect! More generally, the false discovery rate is the frequency of
false positives divided by the frequency of positives (the sum of false and true
positives). This differs from the the Type I error rate, which is the frequency
of false positives divided by the frequency of tests in which the null is true.

Imagine we test

1. 1000 null hypotheses over a lifetime
2. 60% are true nulls, this means there are 600 true nulls and 400 true effects
3. alpha is 5%. This means we expect to find p ≤ 0.05 30 times (0.05 × 600)

when the null is true
4. power is 25%. This means we expect to find p ≤ 0.05 100 times (0.25×400)

when the null is false
5. We have made 30 + 100 = 130 “discoveries” (all experiments with p ≤

0.05), but
6. 30 of the 130, or 23%, are “false discoveries”. This is the false discovery

rate.

Think about this. If the null is never true, you cannot have a false discovery–
every p ≤ 0.05 is a true discovery (the false discovery rate is 0%). And if the
null is always true, every p < 0.05 is a false discovery (the false discovery rate
is 100%).
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6.7.4 Misconception: a low p-value indicates an important
effect

Many researchers write results as if they believe that a small p-value means the
effect is big or important. This may misconception may arise because of the
ubiquitous use of “significant” to indicate a small p-value and “very” or “ex-
tremely” or “wicked” significant to indicate a really small p-value. Regardless,
this is a misconception. A small p-value will usually result when there is high
power (but can occur even if power is low) and power is a function of effect size,
variability (the standard deviation), and sample size. A small p could result
from a large effect size but can also result with a small effect size if the sample
size is big enough.
This is easy to simulate (see script below). Let’s model the effect of the genotype
of a gene on height

set.seed(1)
rho <- 0.5
n <- 10^4
genotype <- c("+/+", "+/-", "-/-")
Sigma <- diag(2)
Sigma[1,2] <- Sigma[2,1] <- rho
X <- rmvnorm(n, mean=c(0,0), sigma=Sigma)
colnames(X) <- c("X1", "X2")
beta <- c(0.05, 0.05)
y <- X%*%beta + rnorm(n)
fit <- lm(y ~ X)
coefficients(summary(fit))

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.007472959 0.01007946 0.7414046 4.584656e-01
## XX1 0.044304824 0.01154709 3.8368830 1.253725e-04
## XX2 0.048228101 0.01170855 4.1190490 3.835033e-05

6.7.5 Misconception: a low p-value indicates high model
fit or high predictive capacity

On page 606, of Lock et al “Statistics: Unlocking the Power of Data”, the au-
thors state in item D “The p-value from the ANOVA table is 0.000 so the model
as a whole is effective at predicting grade point averages.” This is incorrect. A
p-value is not a measure of the predictive capability of a model because the p-
value is a function of the signal, noise (unmodeled error), and sample size while
predictive ability is a function of just the signal:noise ratio. If the signal:noise
ratio is tiny, the predictive ability is small but the p-value can be tiny if the sam-
ple size is large. This is easy to simulate (see script below). The whole-model



6.8. WHAT THE P-VALUE DOES NOT MEAN 189

p-value is exceptionally small (0.00001002) but the relative predictive ability,
measured by the R2, is near zero (0.002).

set.seed(1)
rho <- 0.5
n <- 10^4
Sigma <- diag(2)
Sigma[1,2] <- Sigma[2,1] <- rho
X <- rmvnorm(n, mean=c(0,0), sigma=Sigma)
colnames(X) <- c("X1", "X2")
beta <- c(0.05, -0.05)
y <- X%*%beta + rnorm(n)
fit <- lm(y ~ X)
summary(fit)

##
## Call:
## lm(formula = y ~ X)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6449 -0.6857 0.0148 0.6756 3.6510
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.007473 0.010079 0.741 0.458466
## XX1 0.044305 0.011547 3.837 0.000125 ***
## XX2 -0.051772 0.011709 -4.422 9.9e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.008 on 9997 degrees of freedom
## Multiple R-squared: 0.0023, Adjusted R-squared: 0.002101
## F-statistic: 11.52 on 2 and 9997 DF, p-value: 1.002e-05

6.8 What the p-value does not mean

1. p is not the probability of the null being true. More formally, this prob-
ability is Prob(null|data) but our p-value is P (data|null). These are not
the same. P (null|data) is the probability of the null being true given
the data. P (data|null) is the probability of our data, or something more
extreme than our data, conditional on a true null.

2. 1 − p is not the probability of the alternative
3. p is not a measure of effect size.
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4. p in one experiment is not the same level of evidence against the null as
in another experiment

5. p is not a great indicator of which is more likely, H0 or H1.
6. If one treatment level has p < 0.05 and another treatment level has p >

0.05, this is not evidence that the treatment levels have different effects
on the outcome.

6.9 Recommendations

1. Simply report the exact p-value, along with a CI of the estimate.

• P-values are noisy, there is little reason to report more than two significant
digits (report “p = 0.011” not “p = 0.0108”) although some journals
recommend more than two significant digits.

• For high p-values, report “p = 0.23” not “p = n.s.”.
• For small p-values, there is little reason to report more than one significant

digit (report “p = 0.0002” not “p = 0.00018”).
• For really small p-values, there is little reason to report the exact p-value

(report “p < 0.0001” and not “p = 2.365E − 11”). Recognize that “re-
ally small” is entirely arbitrary. Rafael Irizarry suggested that p-values
less than something like the probability of being killed by lightning strike
should be reported as “p < m”, where m is the probability of being killed
by lightning strike2. According Google University, this is 0.00000142 in
one year or 0.00033 in one lifetime. This text will use p < ls” for p-values
less than 0.0001 – the lifetime probability of being killed by lightning strike
in someone that spends too much time in doors analyzing data.

2. If p < 0.05 (or some other α) do not report this as “significant” – in fact,
avoid the word “significant”. In the english language, “significant” implies
big or important. Small p-values can result even with trivially small effects
if n is big or sample variation is small. The phrase “ASK1 knockout had
a significant effect on reducing liver TG (p = 0.011)” is

• potentially misleading, if we interpret “significant” to mean “having a
large effect on the regulation of liver TG”,

• wrong, if we interpret “significant” to mean “there is an ASK1 knockout
effect”. A low p-value is evidence that the effect of ASK1 knockout is not
zero, but I would wager that knocking out any gene expressed in white
adipose cells will have some effect (however small) on liver TG.

3. If a decision needs to be made (“do we devote time, expense, and personel
to pursue this further?”), then a p-value is a useful tool. If p is smaller

2https://twitter.com/rafalab/status/1310610623898808320

https://twitter.com/rafalab/status/1310610623898808320
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than say 0.001, this is pretty good evidence that the data is not a fluke of
sampling, as long as we are justifiably confident in all the assump-
tions that went into computing this p-value. A replicate experiment
with a small p-value is better evidence. If p is closer to 0.01 or 0.05, this
is only weak evidence of a fluke because of the sampling variability of p.
A replicate experiment with a small p-value is much better evidence.

6.9.1 Primary sources for recommendations

1. ””. Statistical tests, P values, confidence intervals, and power: a guide to
misinterpretations.

2. “Q: Why do so many colleges and grad schools teach p = 0.05? A: Because
that’s still what the scientific community and journal editors use. Q:
Why do so many people still use p = 0.05? A: Because that’s what they
were taught in college or grad school.” – ASA Statement on Statistical
Significance and P-Values

3. “We then discuss our own proposal, which is to abandon statistical signif-
icance. We recommend dropping the NHST paradigm—and the p-value
thresholds intrinsic to it—as the default statistical paradigm for research,
publication, and discovery in the biomedical and social sciences.” – Aban-
don Statistical Significance

4. ” We conclude, based on our review of the articles in this special issue and
the broader literature, that it is time to stop using the term “statistically
significant” entirely. Nor should variants such as “significantly different,”
“p < 0.05,” and “nonsignificant” survive, whether expressed in words, by
asterisks in a table, or in some other way.” – Moving to a World Beyond
“p < 0.05”

5. “We agree, and call for the entire concept of statistical significance to be
abandoned.”–Scientists rise up against statistical significance

6.10 Problems

Problem 1 – simulate the distribution of p under the null. There are many ways
to do this but a straightforard approach is to

1. Create a 2n × m matrix of random normal deviates with mean 0 and sd 1
2. Do a t-test on each column, with the first n values assigned to one group

and the remaining n values assigned to the second group. Save the p-value
from each.

3. Plot a histogram of the p-values.
4. What is the distribution? What is the most likely value of p?

Problem 2 – simulate power. Again, many ways to do this but following up on
Problem 1. 1. Create a 2n × m matrix of random normal deviates with mean

https://link.springer.com/article/10.1007/s10654-016-0149-3
https://link.springer.com/article/10.1007/s10654-016-0149-3
https://amstat.tandfonline.com/doi/full/10.1080/00031305.2016.1154108
https://amstat.tandfonline.com/doi/full/10.1080/00031305.2016.1154108
https://www.tandfonline.com/doi/abs/10.1080/00031305.2018.1527253
https://www.tandfonline.com/doi/abs/10.1080/00031305.2018.1527253
https://www.tandfonline.com/doi/full/10.1080/00031305.2019.1583913
https://www.tandfonline.com/doi/full/10.1080/00031305.2019.1583913
https://www.nature.com/articles/d41586-019-00857-9


192 CHAPTER 6. P-VALUES

0 and sd 1 2. Add an effect to the first n values of each column. Things to
think about a. what is a good effect size to add? The effect/sd ratio, known as
Cohen’s d, is a relative (or standardized) measure of effect size. Cohen suggest
0.2, 0.5, and 0.8 as small, medium, and large standardized effects. b. should the
same effect be added to each individual? Yes! It is the random component that
captures the individual variation in the response. 3. Do a t-test on each column
of the matrix, using the first n values in group 1 and the remaining n values
in group 2. Save the p-values for each. 4. Compute the power, the relative
frequency p ≤ 0.05. 5. Repeat with different values of n, effect size, and sd, but
only vary one at a time. How does power vary with these three parameters?



Chapter 7

Errors in inference

7.1 Classical NHST concepts of wrong

As described in chapter (p-values), two types of error occur in classical Neyman-
Pearson hypothesis testing, and in the NHST version that dominates modern
practice. Type I error occurs when the null hypothesis is true but the p-value
of the test is less than α. This is a false positive, where a positive is a test that
rejects the null. Type II error occurs when the null hypothesis is false but the
p-value of the test is greater than α. This is a false negative, where a negative
is a test that accepts (or fails to reject) the null. Power is not an error but the
frequency of true, positive tests (or the frequency of avoiding Type II error). α
is not an error but the rate of Type I error that a researcher is willing to accept.
Ideally, a researcher sets α based on an evaluation of the pros and cons of Type
I and Type II error for the specific experiment. In practice, researchers follow
the completely arbitary practice of setting α = 0.05.
Why should a researcher care about α and power? Typically, most researchers
don’t give α much thought. And power is considered only in the context of
calculating a sample size for an experiment for a grant proposal. But researchers
should care about rates of Type I error and power because these (and similar
concepts) can help guide decisions about which model to fit to a specific dataset.

7.1.1 Type I error

In classical Neyman-Pearson hypothesis testing, an important property of a
hypothesis test is the size of a test, which may include an entire procedure
that culminates in a hypothesis test. “Size” is a weird name for the probability
of rejecting the null when the null is true. Size is not α. α is the nominal value
– it’s what a researcher wants. Size is the actual value – it’s what a researcher
gets.

193
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It would probably come as a surpise to most researches to learn that the size
of some common tests used with data that look like the researcher’s data is not
0.05. “used with data that look like the researcher’s data” is important here
– a t-test doesn’t have one size. With data that conform to the assumptions
(independence, homogeneity, normality), the size of a t-test is α. But with any
violation, especially when the sample size differs between groups, the size of
the t-test can move away from α. A test that has a size that is less than α is
“conservative” (fewer nulls are rejected than we think, so the status quo is more
often maintained). A test that has a size that is greater than α is “liberal” (more
nulls are rejected than we think, so the status quo is less often maintained). More
conservative tests reduce power. More liberal tests artificially increase power
and increase our rate of false rejection, which can mean “false discovery” if
p-values are used as the arbiter of discovery.

7.1.1.1 Size example 1: the size of a t-test vs. a permutation test,
when the data meet the assumptions

set.seed(1)
n <- 10
n_iter <- 10000
p_t <- numeric(n_iter)
p_perm <- numeric(n_iter)

treatment <- rep(c("cn", "tr"), each = n)
for(iter in 1:n_iter){

sample_1 <- rnorm(n, mean = 10, sd = 1)
sample_2 <- rnorm(n, mean = 10, sd = 1)
y <- c(sample_1, sample_2)
m1 <- lm(y ~ treatment) # no data statement necessary because both variables in workspace
p_t[iter] <- coef(summary(m1))["treatmenttr", "Pr(>|t|)"]

m2 <- lmp(y ~ treatment,
perm = "Prob",
settings = FALSE)

p_perm[iter] <- coef(summary(m2))["treatment1", "Pr(Prob)"]
}
size_t <- sum(p_t < 0.05)/n_iter
size_perm <- sum(p_perm < 0.05)/n_iter
size_table <- data.table(Method = c("lm", "perm"),

Size = c(size_t, size_perm))
knitr::kable(size_table, digits = 4)

Method
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Size

lm

0.0489

perm

0.0488

7.1.1.2 Size example 2: the size of a t-test vs. a permutation test,
when the data have a right skewed distribution

set.seed(1)
n <- 10
n_iter <- 10000
p_t <- numeric(n_iter)
p_perm <- numeric(n_iter)

treatment <- rep(c("cn", "tr"), each = n)
for(iter in 1:n_iter){

# qplot(rnegbin(n = 10^4, mu = 100, theta = 1))
sample_1 <- rnegbin(n, mu = 100, theta = 1)
sample_2 <- rnegbin(n, mu = 100, theta = 1)
y <- c(sample_1, sample_2)
# qplot(x=treatment, y = y)
m1 <- lm(y ~ treatment) # no data statement necessary because both variables in workspace
p_t[iter] <- coef(summary(m1))["treatmenttr", "Pr(>|t|)"]

m2 <- lmp(y ~ treatment,
perm = "Prob",
settings = FALSE)

p_perm[iter] <- coef(summary(m2))["treatment1", "Pr(Prob)"]
}
size_t <- sum(p_t < 0.05)/n_iter
size_perm <- sum(p_perm < 0.05)/n_iter
size_table <- data.table(Method = c("lm", "perm"),

Size = c(size_t, size_perm))
knitr::kable(size_table, digits = 4)

Method

Size

lm

0.0438



196 CHAPTER 7. ERRORS IN INFERENCE

perm

0.0504

7.1.1.3 Size example 3: the size of a t-test vs. a permutation test,
when the data have heterogenous variance and the sample
size is unequal

set.seed(1)
n1 <- 10
n2 <- n1/2
n_iter <- 10000
p_t <- numeric(n_iter)
p_perm <- numeric(n_iter)

treatment <- rep(c("cn", "tr"), times = c(n1, n2))
for(iter in 1:n_iter){

# qplot(rnegbin(n = 10^4, mu = 100, theta = 1))
sample_1 <- rnorm(n1, mean = 10, sd = 0.5)
sample_2 <- rnorm(n2, mean = 10, sd = 1)
y <- c(sample_1, sample_2)
# qplot(x=treatment, y = y)
m1 <- lm(y ~ treatment) # no data statement necessary because both variables in workspace
p_t[iter] <- coef(summary(m1))["treatmenttr", "Pr(>|t|)"]

m2 <- lmp(y ~ treatment,
perm = "Prob",
settings = FALSE)

p_perm[iter] <- coef(summary(m2))["treatment1", "Pr(Prob)"]
}
size_t <- sum(p_t < 0.05)/n_iter
size_perm <- sum(p_perm < 0.05)/n_iter
size_table <- data.table(Method = c("lm", "perm"),

Size = c(size_t, size_perm))
knitr::kable(size_table, digits = 4)

Method

Size

lm

0.1150

perm

0.1211
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7.1.2 Power

In classical Neyman-Pearson hypothesis testing, an important property of a
hypothesis test is the power of a test. “Power” is the probability of rejecting
the null when the null is false. A common way to think about power is, power is
a test’s ability to “detect” an effect if it exists. This makes sense using Neyman-
Pearson but not Fisher (Using Fisher, a p-value is not a detector of an effect –
a reasoning brain is). Using Fisher, we could say that power is the sensitivity
of a test (it takes less sample to provide the same signal).

7.1.2.1 Power example 1: the power of a t-test vs. a permutation
test, when the data meet the assumptions

set.seed(1)
n <- 10
n_iter <- 10000
p_t <- numeric(n_iter)
p_perm <- numeric(n_iter)

treatment <- rep(c("cn", "tr"), each = n)
for(iter in 1:n_iter){
sample_1 <- rnorm(n, mean = 10, sd = 1)
sample_2 <- rnorm(n, mean = 11, sd = 1)
y <- c(sample_1, sample_2)
m1 <- lm(y ~ treatment) # no data statement necessary because both variables in workspace
p_t[iter] <- coef(summary(m1))["treatmenttr", "Pr(>|t|)"]

m2 <- lmp(y ~ treatment,
perm = "Prob",
settings = FALSE)

p_perm[iter] <- coef(summary(m2))["treatment1", "Pr(Prob)"]
}
power_t <- sum(p_t < 0.05)/n_iter
power_perm <- sum(p_perm < 0.05)/n_iter
power_table_normal <- data.table(Method = c("lm", "perm"),

Power = c(power_t, power_perm))
knitr::kable(power_table_normal, digits = 3)

Method

Power

lm

0.554
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perm

0.554

7.1.2.2 Power example 2: the power of a t-test vs. a permutation
test, when the data look like typical count data

set.seed(1)
n <- 10
n_iter <- 10000
p_t <- numeric(n_iter)
p_perm <- numeric(n_iter)

treatment <- rep(c("cn", "tr"), each = n)

for(iter in 1:n_iter){
# qplot(rnegbin(n = 10^4, mu = 100, theta = 1))
sample_1 <- rnegbin(n, mu = 100, theta = 1)
sample_2 <- rnegbin(n, mu = 300, theta = 1)
y <- c(sample_1, sample_2)
# qplot(x=treatment, y = y)
m1 <- lm(y ~ treatment) # no data statement necessary because both variables in workspace
p_t[iter] <- coef(summary(m1))["treatmenttr", "Pr(>|t|)"]

m2 <- lmp(y ~ treatment,
perm = "Prob",
settings = FALSE)

p_perm[iter] <- coef(summary(m2))["treatment1", "Pr(Prob)"]
}
power_t <- sum(p_t < 0.05)/n_iter
power_perm <- sum(p_perm < 0.05)/n_iter
power_table_count <- data.table(Method = c("lm", "perm"),

Power = c(power_t, power_perm))
knitr::kable(power_table_count, digits = 3)

Method

Power

lm

0.512

perm

0.584
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7.2 A non-Neyman-Pearson concept of power

Size and power are concepts specific to the Neyman-Pearson hypothesis testing
framework. Size and power also have limited (or no) use in a research program
in which the null hypothesis is never (or rarely) strictly true. That said, the
concept of size and power are useful. For example, what if we framed power as
the distribution of p-values instead of the frequency of p-values less than α.

Table ?? shows the p-value at the 10th, 25th, 50th, 75th, and 90th percentile of
the set of p-values computed in Power Example 2 above (count data). The nth
percentile is the value in an ordered set of numbers in which n % are less than
the value and 100 - n% are greater than the value. The 50th percentile is the
median. The table shows that at all percentiles except the 90th, the permutation
p-value is smaller than the t-test p-value. And, importantly, the value at 75% for
both is ~ 0.12. This means that for experiments that generate data something
like the fake data generated in Power Example 2, the permutation test is more
sensistive to the incompatibility between the null model and the data than the
t-test, except in the random samples when both methods fail.

quantile_list <- c(0.1, 0.25, 0.5, 0.75, 0.9)
percentiles_t <- quantile(p_t, quantile_list)
percentiles_perm <- quantile(p_perm, quantile_list)

alt_power_table <- data.table(method = c("t-test", "permutation"),
(rbind(percentiles_t,

percentiles_perm)))
knitr::kable(alt_power_table, digits = c(1, 4, 3, 3, 2, 2))

method

10%

25%

50%

75%

90%

t-test

0.0045

0.016

0.047

0.13

0.28
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permutation

0.0012

0.007

0.032

0.12

0.32

7.2.1 Estimation error

7.2.2 Coverage

This text advocates reporting a confidence interval with each reported effect
size. An important property of an estimator is coverage probability, often
shortened to “coverage”.

7.2.3 Type S error

Instead of framing the “size” concept as the rate of Type I error, what if we
framed this as the rate that an estimate is in the correct direction (meaning,
the sign of an effect is the same as the true value). And,

7.2.4 Type M error



Part V: Introduction to
Linear Models
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Chapter 8

An introduction to linear
models

Chapter 2 (Analyzing experimental data with a linear model) is an introduction
to how to use a linear model to estimate treatment effects, with only a few
explanations of what a linear model is. This chapter introduces the linear model
more generally and expands on different goals of linear modeling, including
description and prediction, in addition to explanation (the estimate of treatment
effects, or causal effects more generally).
All students are familiar with the idea of a linear model from learning the
equation of a line, which is

Y = mX + b (8.1)

where m is the slope of the line and b is the Y -intercept. It is useful to think of
equation (8.1) as a function that maps values of X to values of Y . Using this
function, if we input some value of X, we always get the same value of Y as the
output.
A linear model is a function, like that in equation (8.1), that is fit to a set of
data, often to model a process that generated the data or something like the
data. The line in Figure 8.1A is just that, a line, but the line in Figure 8.1B is
a linear model fit to the data in Figure 8.1B.

8.1 Two specifications of a linear model

8.1.1 The “error draw” specification

A linear model is commonly specified using an “measurement error model”.
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Figure 8.1: A line vs. a linear model. (A) the line y = −3.48X +105.7 is drawn.
(B) A linear model fit to the data. The model coefficients are numerically equal
to the slope and intercept of the line in A.

Y = β0 + β1X + ε (8.2)
ε ∼ N(0, σ2) (8.3)

The first line of this specification has two components: the linear predictor
Y = β0 + β1X and the error ε. The linear predictor component looks like
the equation for a line except that 1) β0 is used for the intercept and β1 for
the slope and 2) the intercept term precedes the slope term. This re-labeling
and re-arrangement make the notation for a linear model more flexible for more
complicated linear models. For example Y = β0 + β1X1 + β2X2 + ε is a model
where Y is a function of two X variables.

The linear predictor is deterministic or systematic. As with the equation for
a line, the linear predictor component of a linear model is a function that maps
a specific value of X to a value of Y . This mapped value is the expected
value, or expectation, given a specific input value of X. This is often written
as E[Y |X], which is read as “the expected value of Y given X”, where “given
X” means a specific value of X. This text will often use the word conditional
in place of “given”. For example, I would read E[Y |X] as “the expected value of
Y conditional on X”. It is important to recognize that E[Y |X] is a conditional
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mean – it is the mean value of Y when we observe that X has some specific
value x (that is X = x).

The second line of the specification (8.3) is read as “epsilon is distributed as
Normal with mean zero and variance sigma squared”. This line explicitly spec-
ifies the distribution of the error component of line 1. The error component of
a linear model is a random “draw” from a normal distribution with mean zero
and variance σ2. The second line shows that the error component of the first
line is stochastic. Using the error-model specification, we can think of any
measurement of Y as an expected value plus some random value sampled from
a normal distribution with a specified variance. Because the stochastic part
of this specification draws an “error” from a population, I refer to this as the
error-draw specification of the linear model.

8.1.2 The “conditional draw” specification

A second way of specifying a linear model is using a “sampling model”.

yi ∼ N(µi, σ2) (8.4)
E(Y |X) = µ (8.5)

µi = β0 + β1xi (8.6)

The first line states that the response variable Y is a random variable indepen-
dently drawn from a normal distribution with mean µ and variance σ2. This
first line is the stochastic part of the statistical model. The second line simply
states that µ (the greek letter “mu”) from the first line is the conditional mean
(or expectation). The third line states how µi is generated given that X = xi.
This is the linear predictor, which is the systematic (or deterministic) part of
the statistical model. It is systematic because the same value of xi will always
generate the same µi. Using the sampling-draw specification, we can think of
any measurement of Y as a random drom from a specified distribution. Because
it is Y and not some “error” that is drawn from a specified distribution, I refer
to this as the conditional-draw specification of the linear model.

8.1.3 Comparing the two ways of specifying the linear
model

These two ways of specifying the model encourage slightly different ways of
thinking about how the data (the response varible Y ) were generated. The
error-draw specification “generates” data by 1) constructing what yi “should
be” given xi (this is the conditional expection), then 2) adding some error ei

drawn from a normal distribution with mean zero and some specified variance.
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The conditional-draw specification “generates” data by 1) constructing what yi

“should be” given xi, then 2) drawing a random variable from some specified
distribution whose mean is this expectation. This random draw is not “error”
but the measured value yi. For the error draw generation, we need only one hat
of random numbers, but for the conditional draw generation, we need a hat for
each value of xi.
Here is a short script that generates data by implementing both the error-draw
and conditional-draw specifications. See if you can follow the logic of the code
and match it to the meaning of these two ways of specifying a linear model.

n <- 5
b_0 <- 10.0
b_1 <- 1.2
sigma <- 0.4
x <- 1:n
y_expected <- b_0 + b_1*x

# error-draw. Note that the n draws are all from the same distribution
set.seed(1)
y_error_draw <- y_expected + rnorm(n, mean = 0, sd = sigma)

# conditional-draw. Note that the n draws are each from a different
# distribution because each has a different mean.
set.seed(1)
y_conditional_draw <- rnorm(n, mean = y_expected, sd = sigma)

data.table(X = x,
"Y (error draw)" = y_error_draw,
"Y (conditional draw)" = y_conditional_draw)

## X Y (error draw) Y (conditional draw)
## 1: 1 10.94942 10.94942
## 2: 2 12.47346 12.47346
## 3: 3 13.26575 13.26575
## 4: 4 15.43811 15.43811
## 5: 5 16.13180 16.13180

The error-draw specification is not very useful for thinking about data gener-
ation for data analyzed by generalized linear models, which are models that
allow one to specify distribution families other than Normal (such as the bi-
nomial, Poisson, and Gamma families). In fact, thinking about a model as a
predictor plus error can lead to the misconception that in a generalized linear
model, the error (or residuals from the fit) has a distribution from the non-
Normal distribution modeled. This cannot be true because the distributions
modeled using generalized linear models (other than the Normal) do not have
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negative values (some residuals must have negative values since the mean of the
residuals is zero). Introductory biostatistics textbooks typically only introduce
the error-draw specification because introductory textbooks recommend data
transformation or non-parametric tests if the data are not approximately nor-
mal. This is unfortunate because generalized linear models are extremely useful
for real biological data.

Although a linear model (or statistical model more generally) is a model of a
data-generating process, linear models are not typically used to actually gen-
erate any data. Instead, when we use a linear model to understand something
about a real dataset, we think of our data as one realization of a process that
generates data like ours. A linear model is a model of that process. That said,
it is incredibly useful to use linear models to create fake datasets for at least
two reasons: to probe our understanding of statistical modeling generally and,
more specifically, to check that a model actually creates data like that in the
real dataset that we are analyzing.

8.2 A linear model can be fit to data with con-
tinuous, discrete, or categorical X variables

In the linear model fit to the data in Figure 8.1B, the X variable is continuous,
which can take any real number between the minimum X and maximum X in
the data. For biological data, most variables that are continuous are positive,
real numbers (a zero is not physically possible but could be recorded in the data
if the true value is less than the minimum measurable amount). One exception
is a composition (the fraction of a total), which can be zero. Negative values
can occur with variables in which negative represent a direction (work, electri-
cal potential) or a rate. Discrete variables are numeric but limited to certain
real numbers. Most biological variables that are discrete are counts, and can be
zero, but not negative. Categorical variables are non-numeric descriptions of
a measure. Many of the categorical variables in this text will be the experimen-
tally controlled treatment variable of interest (the variable treatment containing
the values “wild type” and “knockout”) but some are measured covariates (the
variable sex containing the values “female” and “male”).

8.2.1 Fitting linear models to experimental data in which
the X variable is continuous or discrete

A linear model fit to data with a numeric (continous or discrete) X is classical
regression and the result is typically communicated by a regression line. The
experiment introduced in Chapter 9 Linear models with a single, continuous
X is a good example. In this experiment, the researchers designed an experi-
ment to measure the effect of warming on the timing of photosynthetic activity.
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Figure 8.2: Illustration of the slope in a linear model with a numeric X. The
slope (the coefficient of X) is the difference in expected value for any two X that
are one unit apart. This is illustrated for the points on the line at x = 5 and x
= 6.

Temperature was experimentally controlled at one of five settings (0, 2.25, 4.5,
6.75, or 9 °C above ambient temperature) within twelve, large enclosures. The
response variable in the illustrated example is Autumn “green-down”, which is
the day of year (DOY) of the transition to loss of photosynthesis. The intercept
and slope parameters of the regression line (Figure 8.2) are the coefficients of
the linear model. The slope (4.98 days per 1 °C added warmth) estimates the
effect of warming on green-down DOY. What is not often appreciated at the
introductory biostatistics level is that the slope is a difference in condi-
tional means. Any point on a regression line is the expected value of Y at a
specified value of X, that is, the conditional mean E(Y |X). The slope is the
difference in expected values for a pair of points that differ in X by
one unit.

b1 = E(Y |X = x + 1) − E(Y |X = x + 1) (8.7)

I show this in Figure 8.2 using the points on the regression line at x = 5 and
x = 6. Thinking about a regression coefficient as a difference in conditional
means is especially useful for understanding the coefficients of a categorical X
variable, as described below.
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Figure 8.3: Illustration of the slope in a linear model with categorical X. The
slope (the coefficient of X) is the difference in conditional means.

8.2.2 Fitting linear models to experimental data in which
the X variable is categorical

Linear models can be fit to experimental data in which the X variable is cate-
gorical – this is the focus of this text! For the model fit to the data in Figure
8.1B, the coefficient of X is the slope of the line. Perhaps surprisingly, 1) we
can fit a model like equation (8.3) to data in which the X variable is categorical
and 2) the coefficient of X is a slope. How is this possible? The slope of a line
is y2−y1

x2−x1
where (x1, y1) and (x2, y2) are the graph coordinates of any two points

on the line. What is the denominator of the slope function (x2 − x1) when X is
categorical?

The solution to using a linear model with categorical X is to recode the factor
levels into numbers. An example of this was outlined in Chapter 2 (Analyzing
experimental data with a linear model). The value of X for individual mouse
i is a number that indicates the treatment assignment – a value of 0 is given
to mice with a functional ASK1 gene and a value of 1 is given to mice with a
knocked out gene. The regression line goes through the two group means (Figure
8.3). With the (0, 1) coding, xASK1adipo − xASK1F/F = 1, so the denominator
of the slope is equal to one and the slope is simply equal to the numerator
yASK1adipo − yASK1F/F . The coefficient (which is a slope!) is the difference in
conditional means.
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8.3 Statistical models are used for prediction,
explanation, and description

Researchers typically use statistical models to understand relationships between
one or more Y variables and one or more X variables. These relationships
include

1. Descriptive modeling. Sometimes a researcher merely wants to describe
the relationship between Y and a set of X variables, perhaps to discover
patterns. For example, the arrival of a spring migrant bird (Y ) as a
function of sex (X1) and age (X2) might show that males and younger
individuals arrive earlier. Importantly, if another X variable is added to
the model (or one dropped), the coefficients, and therefore, the precise
description, will change. That is, the interpretation of a coefficient as
a descriptor is conditional on the other covariates (X variables) in the
model. In a descriptive model, there is no implication of causal effects
and the goal is not prediction. Nevertheless, it is very hard for humans to
discuss a descriptive model without using causal language, which probably
means that it is hard for us to think of these models as mere description.
Like natural history, descriptive models are useful as patterns in want of
an explanation, using more explicit causal models including experiments.

2. Predictive modeling. Predictive modeling is very common in applied re-
search. For example, fisheries researchers might model the relationship
between population density and habitat variables to predict which subset
of ponds in a region are most suitable for brook trout (Salvelinus fonti-
nalis) reintroduction. The goal is to build a model with minimal prediction
error, which is the error between predicted and actual values for a future
sample. In predictive modeling, the X (“predictor”) variables are largely
instrumental – how these are related to Y is not a goal of the modeling,
although sometimes an investigator may be interested in the relative im-
portance among the X for predicting Y (for example, collecting the data
may be time consuming, or expensive, or enviromentally destructive, so
know which subset of X are most important for predicting Y is a useful
strategy).

3. Explanatory (causal) modeling. Very often, researchers are explicitly in-
terested in how the X variables are causally related to Y . The fisheries
researchers that want to reintroduce trout may want to develop and man-
age a set of ponds to maintain healthy trout populations. This active
management requires intervention to change habitat traits in a direction,
and with a magnitude, to cause the desired response. This model is pre-
dictive – a specific change in X predicts a specific response in Y – because
the coefficients of the model provide knowledge on how the system func-
tions – how changes in the inputs cause change in the output. Causal
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interpretation of model coefficients requires a set of strong assumptions
about the X variables in the model. These assumptions are typically met
in experimental designs but not observational designs.

With observational designs, biologists are often not very explicit about which of
these is the goal of the modeling and use a combination of descriptive, predictive,
and causal language to describe and discuss results. Many papers read as if the
researchers intend explanatory inference but because of norms within the biology
community, mask this intention with “predictive” language. Here, I advocate
embracing explicit, explanatory modeling by being very transparent about the
model’s goal and assumptions.

8.4 What do we call the X and Y variables?

The inputs to a linear model (the X variables) have many names. In this text,
the X variables are typically

• treatment variables – this term makes sense only for categorical vari-
ables and is often used for variables that are a factor containing the
treatment assignment (for example “control” and “knockout”)

• factor variables (or simply, factors) – again, this term makes sense only
for categorical variables

• covariates – this term is usually used for the non-focal X variables in a
statistical model.

A linear model is a regression model and in regression modeling, the X variables
are typically called

• independent variables (often shortened to IV) – “independent” in the
sense that in a statistical model at least, the X are not a function of Y .

• predictor variables (or simply, “predictors”) – this makes the most sense
in prediction models.

• explanatory variables – this term is usually applied in observational
designs and is best used if the explicit goal is causal modeling.

In this text, the output of a linear model (the Y variable or variables if the
model is multivariate) will most often be calle either of

• response variable (or simply, “response”)
• outcome variable (or simply, “outcome”)

These terms have a causal connotation in everyday english. These terms are
often used in regression modeling with observational data, even if the model is
not explicitly causal. On other term, common in introductory textbooks, is
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• dependent variable – “dependent” in the sense that in a statistical
model at least, the Y is a function of the X.

8.5 Modeling strategy

A “best practice” sequence of steps used throughout this text to analyze exper-
imental data is

1. examine the data using exploratory plots to

• examine individual points and identify outliers that are likely due to data
transcription errors or measurement blunders

• examine outlier points that are biologically plausible, but raise ref flags
about undue influe on fit models. This information is used to inform
the researcher on the strategy to handle outliers in the statistical analy-
sis, including algorithms for excluding data or implementation of robust
methods.

• provide useful information for initial model filtering (narrowing the list of
potential models that are relevant to the question and data). Statistical
modeling includes a diverse array of models, yet almost all methods used
by researchers in biology, and all models in this book, are generalizations
of the linear model specified in (8.6). For some experiments, there may
be multiple models that are relevant to the question and data. Model
checking (step 3) can help decide which model to ultimately use.

2. fit the model, in order to estimate the model parameters and the uncer-
tainty in these estimates.

3. check the model, which means to use a series of diagnostic plots and
computations of model output to check that the fit model reasonably ap-
proximates the data. If the diagnostic plots suggest a poor approximation,
then choose a different model and go back to step 2.

4. inference from the model, which means to use the fit parameters to
learn, with uncertainty, about the system, or to predict future observa-
tions, with uncertainty.

5. plot the model, which means to plot the data, which may be adjusted,
and the estimated parameters (or other results dervived from the esti-
mates) with their uncertainty.

Note that step 1 (exploratory plots) is not data mining, or exploring the data
for patterns to test.



8.6. PREDICTIONS FROM THE MODEL 213

8.6 Predictions from the model

For the linear model specified in Model (8.3), the fit model is

yi = b0 + b1xi + ei (8.8)

where b0 and b1 are the coefficients of the fit model and the ei are the residuals
of the fit model. We can use the coefficients and residuals to recover the yi,
although this would rarely be done. More commonly, we could use the coeffi-
cients to calculate conditional means (the mean conditional on a specified value
of X).

ŷi = b0 + b1xi (8.9)

The conditional means are typically called fitted values, if the X are the X
used to fit the model, or predicted values, if the X are new. “Predicted
values” is often shortened to “the prediction”.

8.7 Inference from the model

If our goal is inference, we want to use the fit parameters to learn, with un-
certainty, about the system. Using equation (8.8), the coefficients b0 and b1
are point estimates of the true, generating parameters β0 and β1, the ei are
estimates of εi (the true, biological “noise”), and

∑
e2

i

N−2 is an estimate of the
true, population variance σ2 (this will be covered more in chapter xxx but you
may recognize that

∑
e2

i

N−2 is the formula for a variance). And, using equation
(8.9), ŷi is the point estimate of the parameter µi (the true mean conditional on
X = xi). Throughout this text, Greek letters refer to a theoretical parameter
and Roman letters refer to point estimates.

Our uncertainty in the estimates of the parameters due to sampling is the stan-
dard error of the estimate. It is routine to report standard errors of means and
coefficients of the model. While a standard error of the estimate of σ is available,
this is effectively never reported, at least in the experimental biology literature,
presumably because the variance is thought of as a nuisance parameter (noise)
and not something worthy of study. This is a pity. Certainly treatments can
effect the variance in addition to the mean.

Parametric inference assumes that the response is drawn from some probability
distribution (Normal, or Poisson, or Bernouli, etc.). Throughout this text, I
emphasize reporting and interpreting point estimates and interval estimates
of the point estimate. A confidence interval is a type of interval estimate.
A confidence interval of a parameter is a measure of the uncertainty in the



214 CHAPTER 8. AN INTRODUCTION TO LINEAR MODELS

estimate. A 95% confidence interval has a 95% probability (in the sense of long-
run frequency) of containing the parameter. This probability is a property of
the population of intervals that could be computed using the same sampling
and measuring procedure. It is not correct, without further assumptions, to
state that there is a 95% probability that the parameter lies within the interval.
Perhaps a more useful interpretation is that the interval is a compatability
interval in that it contains the range of estimates that are compatible with the
data, in the sense that a t-test would not reject the null hypothesis of a difference
between the estimate and any value within the interval (this interpretation does
not imply anything about the true value).

Another kind of inference is a significance test, which is the computation of
the probability of “seeing the data” or something more extreme than the data,
given a specified null hypothesis. This probability is the p-value, which can
be reported with the point estimate and confidence interval. There are some
reasonable arguments made by very influential statisticians that p-values are
not useful and lead researchers into a quagmire of misconceptions that impede
good science. Nevertheless, the current methodology in most fields of Biology
have developed in a way to become completely dependent on p-values. I think
at this point, a p-value can be a useful, if imperfect tool in inference, and will
show how to compute p-values throughout this text.

Somewhat related to a significance test is a hypothesis test, or a Null-
Hypothesis Signficance Test (NHST), in which the p-value from a
significance test is compared to a pre-specified error rate called α. Hypothesis
testing was developed as a formal means of decision making but this is
rarely the use of NHST in experimental biology. For almost all applications
of p-values that I see in the literature that I read in ecology, evolution,
physiology, and wet-bench biology, comparing a p-value to α adds no value to
the communication of the results.

8.7.1 Assumptions for inference with a statistical model

1. The data were generated by a process that is “linear in the parameters”,
which means that the different components of the model are added to-
gether. This additive part of the model containing the parameters is the
linear predictor in specifications (8.3) and (8.6) above. For example, a
cubic polynomial model

E(Y |X) = β0 + β1X + β2X2 + β3X3 (8.10)

is a linear model, even though the function is non-linear, because the differ-
ent components are added. Because a linear predictor is additive, it can be
compactly defined using matrix algebra
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E(Y |X) = Xβ (8.11)

where mathbfX is the model matrix and β is the vector of parameters. We
discuss these more in chapter xxx.

A Generalized Linear Model (GLM) has the form g(µi) = ηi where η (the
Greek letter “eta”) is the linear predictor

η = Xβ (8.12)

GLMs are extensions of linear models. There are non-linear models that are not
linear in the parameters, that is, the predictor is not a simple dot product of the
model matrix and a vector of parameters. For example, the Michaelis-Menten
model is a non-linear model

E(Y |X) = β1X

β2 + X
(8.13)

that is non-linear in the parameters because the parts are not added together.
This text covers linear models and generalized linear models, but not non-linear
models that are also non-linear in the parameters.

2. The draws from the probability distribution are independent. Indepen-
dence implies uncorrelated Y conditional on the X, that is, for any two
Y with the same value of X, we cannot predict the value of one given the
value of the other. For example, in the ASK1 data above, “uncorrelated”
implies that we cannot predict the glucose level of one mouse within a
specific treatment combination given the glucose level of another mouse
in that combination. For linear models, this assumption is often stated as
“independent errors” (the ε in model (8.3)) instead of independent obser-
vations.

There are lots of reasons that conditional responses might be correlated. In the
mouse example, correlation within treatment group could arise if subsets of mice
in a treatment group are siblings or are housed in the same cage. More generally,
if there are measures both within and among experimental units (field sites or
humans or rats) then we’d expect the measures within the same unit to err from
the model in the same direction. Multiple measures within experimental units
(a site or individual) creates “clustered” observations. Lack of independence
or clustered observations can be modeled using models with random effects.
These models go by many names including linear mixed models (common in
Ecology), hierarchical models, multilevel models, and random effects models. A
linear mixed model is a variation of model (8.3). This text introduces linear
mixed models in chapter xxx.
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Measures that are taken from sites that are closer together or measures taken
closer in time or measures from more closely related biological species will tend
to have more similar values than measures taken from sites that are further
apart or from times that are further apart or from species that are less closely
related. Space and time and phylogeny create spatial and temporal and
phylogenetic autocorrelation. Correlated error due to space or time or
phylogeny can be modeled with Generalized Least Squares (GLS) models.
A GLS model is a variation of model (8.3).

8.7.2 Specific assumptions for inference with a linear
model

1. Constant variance or homoskedasticity. The most common way of
thinking about this is the error term ε has constant variance, which is a
short way of saying that random draws of ε in model (8.3) are all from the
same (or identical) distribution. This is explicitly stated in the second
line of model specification (8.3). If we were to think about this using model
specification (8.6), then homoskedasticity means that σ in N(µ, σ) is con-
stant for all observations (or that the conditional probability distributions
are identical, where conditional would mean adjusted for µ)

Many biological processes generate data in which the error is a function of the
mean. For example, measures of biological variables that grow, such as lengths
of body parts or population size, have variances that “grow” with the mean. Or,
measures of counts, such as the number of cells damaged by toxin, the number
of eggs in a nest, or the number of mRNA transcripts per cell have variances
that are a function of the mean. Heteroskedastic error can be modeled with
Generalized Least Squares, a generalization of the linear model, and with
Generalized Linear Models (GLM), which are “extensions” of the classical
linear model.

2. Normal or Gaussian probability distribution. As above, the most com-
mon way of thinking about this is the error term ε is Normal. Using model
specification (8.6), we’d say the conditional probablity distribution of the
response is normal. A normal probability distribution implies that 1) the
response is continuous and 2) the conditional probability is symmetric
around mui. If the conditional probability distribution has a long left or
right tail it is skewed left or right. Counts (number of cells, number of
eggs, number of mRNA transcripts) and binary responses (sucessful escape
or sucessful infestation of host) are not continuous and often often have
asymmetric probablity distributions that are skewed to the right and while
sometimes both can be reasonably modeled using a linear model they are
more often modeled using generalized linear models, which, again, is an
extension of the linear model in equation (8.6). A classical linear model
is a specific case of a GLM.
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A common misconception is that inference from a linear model assumes that
the raw response variable is normally distributed. Both the error-draw and
conditional-draw specifications of a linear model show precisely why this con-
ception is wrong. Model (??) states explicitly that it is the error that has the
normal distribution – the distribution of Y is a mix of the distribution of X
and the error. Model (8.6) states that the conditional outcome has a normal
distribution, that is, the distribution after adjusting for variation in X.

8.8 “linear model,”regression model“, or”statistical
model”?

Statistical modeling terminology can be confusing. The X variables in a statisti-
cal model may be quantitative (continuous or integers) or categorical (names or
qualitative amounts) or some mix of the two. Linear models with all quantita-
tive independent variables are often called “regression models.” Linear models
with all categorical independent variables are often called “ANOVA models.”
Linear models with a mix of quantitative and categorical variables are often
called “ANCOVA models” if the focus is on one of the categorical X or “regres-
sion models” if there tend to be many independent variables.

This confusion partly results from the history of the development of regression
for the analysis of observational data and ANOVA for the analysis of exper-
imental data. The math underneath classical regression (without categorical
variables) is the linear model. The math underneath classical ANOVA is the
computation of sums of squared deviations from a group mean, or “sums of
squares”. The basic output from a regression is a table of coefficients with stan-
dard errors. The basic ouput from ANOVA is an ANOVA table, containing the
sums of squares along with mean-squares, F-ratios, and p-values. Because of
these historical differences in usage, underlying math, and output, many text-
books in biostatistics are organized around regression “vs.” ANOVA, presenting
regression as if it is “for” observational studies and ANOVA as if it is “for”
experiments.

It has been recognized for many decades that experiments can be analyzed using
the technique of classical regression if the categorical variables are coded as num-
bers (again, this will be explained later) and that both regression and ANOVA
are variations of a more general, linear model. Despite this, the “regression
vs. ANOVA” way-of-thinking dominates the teaching of biostatistics.

To avoid misconceptions that arise from thinking of statistical analysis as “re-
gression vs. ANOVA”, I will use the term “linear model” as the general, umbrella
term to cover everything in this book. By linear model, I mean any model that
is linear in the parameters, including classical regression models, marginal mod-
els, linear mixed models, and generalized linear models. To avoid repetition, I’ll
also use “statistical model”.
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Chapter 9

Linear models with a single,
continuous X

1. observation warming on phenology
2. experiment warming on phenology
3. using regression to compare longitudinal (dietary methionine)

9.1 A linear model with a single, continuous X
is classical “regression”

9.1.1 Analysis of “green-down” data

To introduce some principles of modeling with a single continuous X variable,
I’ll use a dataset from

Richardson, A.D., Hufkens, K., Milliman, T. et al. Ecosystem warming extends
vegetation activity but heightens vulnerability to cold temperatures. Nature
560, 368–371 (2018).

Source data

The data are from a long-term experiment on the effects of warming and CO2
on a high-carbon northern temperate peatland and is the focal dataset of the
study. The experiment involves 10 large, temperature and CO2 controlled en-
closures. CO2 is set to 400 ppm in five enclosures and 900 ppm in five enclosures.
Temperature of the five enclosures within each CO2 level is set to 0, 2.25, 4.5,
6.75, or 9 °C above ambient temperature. The multiple temperature levels is
a regression design, which allows a researcher to measure non-linear effects.
Read more about the experimental design and the beautiful implementation.
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https://doi.org/10.1038/s41586-018-0399-1
https://doi.org/10.1038/s41586-018-0399-1
https://doi.org/10.1038/s41586-018-0399-1
https://www.nature.com/articles/s41586-018-0399-1#Sec15
https://mnspruce.ornl.gov
https://mnspruce.ornl.gov
https://mnspruce.ornl.gov/design
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The question pursued is in this study is, what is the causal effect of warming on
the timing (or phenology) of the transition into photosynthetic activity (“green-
up”) in the spring and of the transition out of photosynthetic activity (“green-
down”) in the fall? The researchers measured these transition dates, or Day
of Year (DOY), using foliage color. Here, we focus on the transition out of
photosynthesis or “green-down” DOY.
Import the data

1. Examine the data

gg1 <- qplot(x = temperature,
y = transition_date,
data = fig2c) +

geom_smooth(method = "lm")
gg2 <- qplot(x = temperature,

y = transition_date,
data = fig2c) +

geom_smooth(method = "lm", formula = y ~ poly(x, 2))
gg3 <- qplot(x = temperature,

y = transition_date,
data = fig2c) +

geom_smooth()
plot_grid(gg1, gg2, gg3, ncol=3)

280

300

320

340

0.0 2.5 5.0 7.5
temperature

tr
an

si
tio

n_
da

te

280

300

320

340

0.0 2.5 5.0 7.5
temperature

tr
an

si
tio

n_
da

te

280

300

320

340

0.0 2.5 5.0 7.5
temperature

tr
an

si
tio

n_
da

te

No plot shows any obvious outlier that might be due to measurement blunders
or curation error. The linear regression in the left-most plot clearly shows that
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a linear response is sufficient to capture the effect of temperature on day of
green-down.

2. choose a model. Because the X variable (temperature) was experimen-
tally set to five levels, the data could reasonably be modeled using either a
linear model with a categorical X or a linear model with a continuous X.
The advantage of modeling temperature as a continuous variable is that
there is only one effect, the slope of the regression line. If modeled as a
categorical factor with five levels, there are, at a minimum, four interesting
effects (the difference in means between each non-reference level and refer-
ence (temperature = 0) level). Also, for inference, modeling temperature
as a continuous variable increases power for hypothesis tests.

3. fit the model

# Step 1: fit the model
m1 <- lm(transition_date ~ temperature, data = fig2c)

4. check the model

# check normality assumption
set.seed(1)
qqPlot(m1, id=FALSE)
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The Q-Q plot indicates the distribution of residuals is well within that expected
for a normal sample and there is no cause for concern with inference.
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# check homogeneity assumption
spreadLevelPlot(m1, id=FALSE)
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##
## Suggested power transformation: 0.6721303

The spread-location plot shows no conspicuous trend in how the spread changes
with the conditonal mean. There is no cause for concern with inference.

5. inference from the model

m1_coeff <- summary(m1) %>%
coef()

m1_confint <- confint(m1)
m1_coeff <- cbind(m1_coeff, m1_confint)
m1_coeff

## Estimate Std. Error t value Pr(>|t|) 2.5 %
## (Intercept) 289.458750 3.0593949 94.613071 1.738650e-13 282.403773
## temperature 4.982745 0.5541962 8.990941 1.866888e-05 3.704767
## 97.5 %
## (Intercept) 296.513728
## temperature 6.260724
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Figure 9.1: Modification of the published Figure 2c showing the experimental
effect of warming on the date of autumn green-down (the transition to fall foliage
color) in a mixed shrub community. The bottom panel is a scatterplot. The
regression line shows the expected value of Y (transition day of year) given a
value of X (added temperature). The slope of the regression line is the estimate
of the effect. The estimate and 95% confidence interval of the estimate are given
in the top panel.

The effect of added temperature on the day of green-down is 4.98 d per 1 °C
(95% CI: 3.7, 6.3; p < 0.001).

6. plot the model

7. Report the results

The modeled effect of added temperature is Slope: 4.98 (3.7, 6.26) d per 1 °C
(9.1).

9.1.2 Learning from the green-down example

Figure 9.1 is a scatterplot with the green-down DOY for the mixed-shrub
community on the Y axis and added temperature on the X axis. The line
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through the data is a regression line, which is the expected value of Y (green-
down DOY) given a specific value of X (added temperature). The slope of the
line is the effect of added temperature on timing of green-down. The intercept
of the regression line is the value of the response (day of green-down) when X is
equal to zero. Very often, this value is not of interest although the value should
be reported to allow predictions from the model. Also very often, the value of
the intercept is not meaningful because a value of X = 0 is far outside the range
of measured X, or the value is absurd because it is impossible (for example, if
investigating the effect of body weight on metabolic rate, the value weight = 0
is impossible).

The intercept and slope are the coefficients of the model fit to the data, which
is

dayi = b0 + b1temperaturei + ei (9.1)

where day is the day of green-down, temperature is the added temperature, and
i refers (or “indexes”) the ith enclosure. This model completely reconstructs the
day of green-down for all ten enclosures. For example, the day of green-down
for enclosure 8 is

332 = 289.458750 + 4.982745 × 6.73 + 9.00737 (9.2)

The coefficients in the model are estimates of the parameters of the generating
model fit to the data

day = β0 + β1temperature + ε (9.3)
ε ∼ N(0, σ2) (9.4)

A generating model of the data is used to make inference, for example, a measure
of uncertainty in a prediction in the timing of green-down with future warming,
or a measure of uncertainty about the effect of temperature on green-down.

9.1.3 Using a regression model for “explanation” – causal
models

In this text, “explanatory” means “causal” and a goal of explanatory modeling
is the estimate of causal effects using a causal interpretation of the linear
model (=regression) coefficients. “What what? I learned in my stats 101 course
that we cannot interpret regression coefficients causally”.

Statisticians (and statistics textbooks) have been quite rigid that a regression
coefficient has a descriptive (or “observational”, see below) interpretation but
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not a causal interpretation. At the same time, statisticians (and statistics text-
books) do not seem to have any issue with interpeting the modeled effects from
an experiment causally, since this is how they are interpreted. But if the mod-
eled effects are simply coefficients from a linear (= regression) model, then this
historical practice is muddled.

Part of this muddled history arises from the use of “regression” for models fit
to observational data with one or more continuous X variables and the use of
“ANOVA” for models fit to experimental data with one or more categorical X.
This separation seems to have blinded statisticians from working on the formal
probabilistic statements underlying causal interpretations of effect estimates in
ANOVA and the synthesis of these statements with the probabilistic statements
in regression modeling. Two major approaches to developing formal, probabilis-
tic statements of causal modeling in statistics are the Rubin causal model and
the do-operator of Pearl. Despite the gigantic progress in these approaches,
little to none of this has found its way into biostatistics textbooks.

9.1.3.1 What a regression coefficient means

A linear (“regression”) model coefficient, such as the coefficient for temperature,
β1, has two interpretations, an observational interpretation and a causal in-
terpretation. To understand these interpretations, it’s useful to remember
that a predicted value from a regression model is a conditional mean

E[day|temperature] = β0 + β1temperature (9.5)

In words “the expected value of day conditional on temperature is beta-knot
plus beta-one times temperature”. An expected value is a long run average
– if we had an infinite number of enclosures with temperature = x (where x
is a specific value of added temperature, say 2.5 °C), the average day of these
enclosures is β0 + β1x.

The parameter β1 is a difference in conditional means.

β1 = E[day|temperature = x + 1] − E[day|temperature = x] (9.6)

In words, “beta-one is the expected value of day of green-down when the tem-
perature equals x + 1 minus the expected value of day of green-down when the
temperature equals x.” A very short way to state this is “beta-one is a difference
in conditional means”.

tl;dr. Note that the “+ 1” in this definition is mere convenience. Since the slope
of a line is y2−y1

x2−x1
, where (x1, y1) and (x2, y2) are the coordinates of any two

points on the line, it is convenient to choose two points that differ in X by one
unit, which makes the fraction equal to the numerator only. The numerator
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is a difference in conditional means. It is also why the units of a regression
coefficient are ”per unit of X even if defined as a difference in two Y values.

The difference between observational and causal interpretations of β1 depends
on the “event” conditioned on in E[day|temperature]. Let’s start with the causal
interpretation, which is how we should think about the regression coefficients in
the green-down experiment.

9.1.3.2 Causal interpretation – conditional on “doing” X = x

In the causal interpretation of regression, E[day|temperature] is conditioned
on “doing” a real or hypothetical intervention in the system where we set the
value of temperature to a specific value x (”temperature = x), while keeping
everything else about the system the same. This can be stated explicitly as
E[day| do temperature = x]. Using the do-operator, we can interpret β1 as an
effect coefficient.

β1 = E[day| do temperature = x + 1] − E[day| do temperature = x] (9.7)

In words, “beta-one is the expected value of day of green-down were we to set
the temperature to x + 1, minus the expected value of day of green-down were
we to set the temperature to x.”

tl;dr. In the green-down experiment, the researchers didn’t set the temperature
in the intervened enclosures to the ambient temperature + 1 but to ambient
+ 2.25, ambient + 4.5, ambient + 6.75, and ambient + 9.0. Again (see tl;dr
above), the + 1 is mere convenience in the definition.

9.1.3.3 Observational interpretation – conditional on “seeing” X =
x.

In the observational interpretation of regression, E[day|temperature] is condi-
tioned on sampling data and “seeing” a value of temperature. We can state
this explicitly as E[day| see temperature]. From this, we can interpret β1 as an
observational coefficient

β1 = E[day| see temperature = x + 1] − E[day| see temperature = x] (9.8)

In words, “beta-one is the expected value of day of green-down when see that
temperature equals x + 1 minus the expected value of day of green-down when
we see that temperature equals x.” To understand what I mean by “observa-
tional”, let’s imagine that the green-down data do not come from an experiment
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Figure 9.2: a Directed Acyclic (or causal) Graph of a hypothetical world where
the day of green-down is caused by two, correlated environmental variables,
temperature and moisture, and to a noise factor (U) that represents an unspec-
ified set of additional variables that are not correlated to either temperature or
moisture.

in which the researchers intervened and set the added temperature to a specifc
value but from ten sites that naturally vary in mean annual temperature. Or
from a single site with 10 years of data, with some years warmer and some years
colder. Data from this kind of study is observational – the researcher didn’t
intervene and set the X values but merely observed the X values.

If we sample (or “see”) a site with a mean annual temperature that is 2.5 °C
above a reference value, the expected day of green-down is E[day|temperature =
2.5řC]. That is, values near E[day|temperature = 2.5řC] are more probable
than values away from E[day|temperature = 2.5řC]. Or, if the only information
that we have about this site is a mean annual temperature that is 2.5 °C above
some reference, then our best prediction of the day of green-down would be
E[day|temperature = 2.5řC]. We do not claim that the 4.98 day delay in green-
down is caused by the warmer temperature, only that this is the expected delay
relative to the reference having seen the data.

The seeing interpretation of a regression coefficient is descriptive– it is a de-
scription of a mathematical relationship. In this interpretation, the coefficient
is not causal in the sense of what the expected response in Y would be were
we to intervene in the system and change X from x to x + 1.

9.1.3.4 Omitted variable bias

What is the consequence of interpreting a regression coefficient causally instead
of observationally?

Let’s expand the thought experiment where we have an observational data set
of green down dates. In this thought experiment, only two variables system-
atically affect green-down DOY. The first is the temperature that the plants
experience; the effect of temperature is β1. The second is the soil moisture that
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the plants experience; the effect of moisture is β2. temperature and moisture
are correlated with a value ρ. This causal model is graphically represented by
the causal graph above.

Lets fit two linear models.

(M1) day = b0 + b1 temperature + b2 moisture + ε (9.9)
(M2) day = b0 + b1 temperature + ε (9.10)

M1 the linear model including both temperature and moisture as X variables
and M2 the linear model including only temperature as an X variable. Given
the true causal model above, b1 is an unbiased estimate of the true causal effect
of temperature β1 in M1 because the expected value of b1 is β1. By contrast,
b1 is a biased estimate of the true causal effect of temperature β1 in M2. The
expected value of b1 in M2 is the true, causal effect plus a bias term.

E(b1|M1) = β + ρα
σmoisture

σtemperature
(9.11)

This bias (ρα σmoisture

σtemperature
) is omitted variable bias. The omitted variable

moisture is an unmeasured, confounding variable. A variable X2 is a con-
founder for variable X1 if X2 has both a correlation with X1 and a path to the
response Y that is not through X1. With ommitted variable bias, as we sample
more and more data, our estimate of the effect doesn’t converge on the truth
but the truth plus some bias.

9.1.3.5 Causal modeling with experimental versus observational data

Causal interpretation requires conditioning on “doing X=x”. For the green-down
data, “doing X=x” is achieved by the random treatment assignment of the en-
closures. How does random treatment assignment achieve this? Look again at
Figure 9.2. If the values of treatment are randomly assigned, then, by defini-
tion, the expected value of the correlation between treatment and moisture is
zero. In fact, the expected value of the correlation between treatment and any
measurable variable at the study site is zero. Given, this, the expected value of
the regression coefficient for temperature (b1) is β because ρ = 0. That is, the
estimate of the true effect is unbiased. It doesn’t matter if moisture, or any
other variable, is excluded from the model. (That said, we may want to include
moisture or other variables in the model to increase precision of the causal ef-
fect. This is addressed in the chapter “Models with Covariates”). This is what
an experiment does and why experiments are used to answer causal questions.

Can we use observational data for causal modeling? Yes, but the methods for
this are outside of the scope of this text. The mathematical foundation for this
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is known as path analysis, which was developed by geneticist and evolutionary
biologist Sewell Wright (I include this because this work has inspired much of
how I think about biology and because he is both my academic grandfather
and great-grandfather). Causal analysis of observational data in biology is rare
outside of ecology and epidemiology. Good starting points for the modern de-
velopment of causal analysis are Hernán MA and Robins JM (2020) and Burgess
et al. (2018). A gentle introduction is Pearl and Mackenzie (2018).

9.1.4 Using a regression model for prediction – prediction
models

The researchers in the green-down study also presented estimates of the effect of
temperature on green-down using two observational datasets. Let’s use the one
in Extended Data Figure 3d to explore using a regression model for prediction.
The data are taken from measurements of the day of green-down over an 86 year
period at a single site. The response variable is green_down_anomaly (the
difference between the day of green down for the year and the mean of these
days over the 86 years). The predictor variable is autumn_temp_anomaly (the
difference between the mean temperature over the year and the mean of these
means).

R2 = 0.13 , p = 0.00063
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The plot in figure ?? shows the regression line of a linear model fit to the data.
Two statistics are given in the plot.

1. The p-value of the slope (the coefficient b1 of autumn_temp_anomaly)

https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
https://www.annualreviews.org/doi/abs/10.1146/annurev-genom-083117-021731
https://www.annualreviews.org/doi/abs/10.1146/annurev-genom-083117-021731
https://www.basicbooks.com/titles/judea-pearl/the-book-of-why/9780465097609/
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2. The R2 of the model fit.

In addition, two intervals are shown.

1. 95% confidence interval of the expected values in blue. The width of
this band is a measure of the precision of the estimates of expected values.

2. 95% prediction interval of the predictions in gray. The width of this
band is a measure of how well the model predicts.

It is important that researchers knows what each of these statistics and bands
are, when to compute them and when to ignore them them, and what to say
about each when communicating the results.

9.1.4.1 95% CI and p-value

Both the 95% confidence interval of the expected values and the p-value are a
function of the standard error of the slope coefficient b1 and so are complimen-
tary statistics. The p-value is the probability of sampling the null that results in
a t-value as or more extreme than the observed t for the coefficient b1. This null
includes the hypothesis β1 = 0. The 95% confidence interval of the expected
values is the band containing expected values (mean green_down_anomaly
conditional on autumn_temp_anomaly) that are compatible with the data.
There are a couple of useful ways of thinking about this band.

1. The band captures an infinite number of regression lines that are com-
patible with the data. Some are more steep and predict smaller expected
values at the low end of autumn_temp_anomaly and higher expected val-
ues at the high end of autumn_temp_anomaly. Others are less steep and
predict higher expected values at the low end of autumn_temp_anomaly
and lower expected values at the high end of autumn_temp_anomaly.

2. The band captures the 95% CI of the conditional mean at every value of
X. Consider the 95% CI of the conditional mean at the mean value of X.
As we move away from this mean value (lower to higher X), the 95% CI
of the conditional mean increases.

A 95% CI and p-value are useful statistics to report if the purpose is causal
modeling, as in the example above using the experimental green-down data
(where the 95% CI was not presented as a confidence band of the expected
values but a CI of the estimate of the effect of added temperature). A 95%
CI and p-value are also useful statistics to report if the purpose is descriptive
modeling, simply wanting to know how the conditional mean of the response is
related to an X variable.
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9.1.4.2 95% prediction interval and R2

Both the R2 and the 95% prediction interval are a function of the population
variability of green_down_anomaly conditional on autumn_temp_anomaly
(the spread of points along a vertical axis about the regression line) and are
complimentary statistics. Briefly,

1. the R2 is a measure of the fraction of the variance in the response that is
accounted by the model (some sources say “explained by the model” but
this is an odd use of “explain”). It is a number between 0 and 1 and is a
measure of “predictability” if the goal is prediction modeling.

2. The 95% prediction interval will contain a new observation 95% of the
time. It provides bounds on a prediction – given a new observation,
there is a 95% probability that the interval at xnew will contain ynew.

To understand R2 and the 95% prediction interval a bit better, let’s back up.

green_down_anomalyi = b0 + b1autumn_temp_anomalyi + ei(#eq : doyf it)
(9.12)

Model @ref(eq:eq:doy_fit) recovers the measured value of green_down_anomaly
for any year, given the autumn_temp_anomaly for the year. The equation
includes the linear predictor (b0 + b1autumn_temp_anomalyi) and the
residual from the predictor (ei). The predictor part of @ref(eq:doy_fit) is
used to compute ŷ (“y hat”).

ŷi = b0 + b1autumn_temp_anomalyi(#eq : doyhat) (9.13)

The ŷ are fitted values, if the values are computed from the data that were
used for the fit, or predicted values (or simply the prediction), if the values
are computed from values of the predictor variables outside the set used to fit
the model. For the purpose of plotting, generally, with models with categorical
factors as X, I prefer either modeled values or conditional means to fitted
values.

9.1.4.3 R2

A good model accounts for a sizable fraction of the total variance in the response.
This fraction is the R2 value, which is given in summary(m1) and accessed di-
rectly with

summary(m1)$r.squared
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## [1] 0.1305754

R2 is the fraction of the total variance of Y that is generated by the linear
predictor.

R2 = VAR(ŷ)
VAR(y)

(9.14)

yhat <- fitted(m1)
y <- efig_3d[, green_down_anomaly]
var(yhat)/var(y)

## [1] 0.1305754

R2 will vary from zero (the model accounts for nothing) to one (the model
accounts for everything). R2 is often described as the fraction of total variation
explained by the model” but the usage of “explain” is observational and not
causal. Because of the ambiguous usage of “explain” in statistics, I prefer to
avoid the word.

It can be useful sometimes to think of R2 in terms of residual error, which is
the variance of the residuals from the model. The larger the residual error, the
smaller the R2, or

R2 = 1 − VAR(e)
VAR(y)

(9.15)

e <- residuals(m1)
y <- efig_3d[, green_down_anomaly]
1 - var(e)/var(y)

## [1] 0.1305754

The smaller the residuals, the higher the R2 and the closer the predicted values
are to the measured values. The sum of the model variance and residual variance
equals the total variance and, consequently, R2 is a signal to signal + noise ratio.
The noise in R2 is the sampling variance of the individual measures. The noise in
a t-value is the sampling variance of the parameter (for m1, this is the sampling
variance of b1). This is an important distinction because it means that t and R2

are not related 1:1. In a simple model with only a single X, one might expect
R2 to be big if the p-value for the slope is tiny, but this isn’t necessarily true
because of the different meaning of noise in each. A study with a very large
sample size n can have a tiny p-value and a small R2. A p-value is not a good
indicator of predictability. R2 is. This is explored more below.
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9.1.4.4 Prediction interval

A good prediction model has high predictability, meaning the range of predicted
values is narrow. A 95% CI is a reasonable range to communicate. For any
decision making using prediction, it is better to look at numbers than a band
on a plot.

Autumn Temp Anomaly (°C)

Expected (days)

2.5% (days)

97.5% (days)
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Given these data and the fit model, if we see a 2 °C increase in mean fall temper-
ature, we expect the autumn green-down to extend 3.2 days. This expectation
is an average. We’d expect 95% of actual values to range between -6.4 days
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and 12.8 days. This is a lot of variability. Any prediction has a reasonable
probability of being over a week early or late. This may seem surprising given
the p-value of the fit, which is 0.0006. But the p-value is not a reliable indicator
of predictability. It is a statistic related to the blue band, not the gray band.

To understand this prediction interval a bit more, and why a p-value is not a
good indicator of predictability, it’s useful to understand what makes a predic-
tion interval “wide”. The width of the prediction interval is a function of two
kinds of variability

1. The variance of the expected value at a specific value of X. This is the
square of the standard error of b1. The blue band is communicating the
CI based on this variance. The p-value is related to the wideth of this
band.

2. The variance of Y at a specific value of X. This variance is σ2. It is useful
for learning to think about the equation for the estimate of this variance.

σ̂2 =
∑

e2
i

N − 2
(9.16)

Again, ei is the residual for the ith case. The denominator (N − 2) is the
degrees of freedom of the model. Computing σ̂2 manually helps to insure that
we understand what is going on.

summary(m1)$sigma # R's calculation of sigma hat

## [1] 4.736643

df <- summary(m1)$df[2] # R's calculation of df. Check that this is n-2!
sqrt(sum(e^2)/df)

## [1] 4.736643

Remember that an assumption of the linear models that we are working with
at this point is, this variance is constant for all values of X, so we have a single
σ. Later, we will cover linear models that model heterogeneity in this variance.
σ is a function of variability in the population – it is the population standard
deviation conditional on X.

Importantly, predictability is a function of both these components of variabil-
ity. As a consequence, it is R2, and not the p-value, that is the indicator of
predictability. In the observational green-down data, even if we had thousands
of years of data, we would still have a pretty low R2 because of the population
variability of green_down_anomaly at a given autumn_temp_anomaly.
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9.1.4.5 Median Absolute Error and Root Mean Square Error are
absolute measures of predictability

A p-value is not at all a good guide to predictability. R2 is proportional to
predictability but is not really useful in any absolute sense. If we want to
predict the effect of warming on the day of green-down, I would like to have
a measure of predictability in the units of green-down, which is days. The
prediction interval gives this for any value of X. But what about an overall
measure of predictability?

Three overall measures of predictability are

1. σ̂, the estimate of σ. This is the standard deviation of the sample condi-
tional on X.

2. RMSE, the root mean squared error. This is

SSE =
∑

(yi − ŷi)2 (9.17)

MSE = SSE

N
(9.18)

RMSE =
√

MSE (9.19)

SSE (“sum of squared error”) is the sum of the squared residuals (yi − ŷi) of
the model. MSE (“mean squared error”) is the mean of the squared errors.
RMSE is the square root of the mean squared error. RMSE is almost equal to
σ̂. The difference is the denominator, which is N in the computation of RMSE
and df (the degrees of freedom of the model, which is N minus the number of
fit parameters) in the computation of σ̂.

3. MAE, the mean absolute error. This is

MAE = 1
N

∑
|yi − ŷi| (9.20)

sigma

RMSE

MAE

4.74

4.68

3.58
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If the goal of an analysis is prediction, one of these statistics should be reported.
For the model fit to the observational green-down data in Extended Figure 3d,
these three statistics are given in Table ?? above (to two decimal places simply
to show numerical difference between σ̂ and RMSE). All of these are measures
of an “average” prediction error in the units of the response. The average
error is either 4.7 or 3.6 days, depending on which statistic we report. Why
the difference? Both σ̂ and RMSE are functions of squared error and so big
differences between predicted and actual value are emphasized. If an error of 6
days is more than twice as bad than an error of 3 days, report RMSE. Why
RMSE and not σ̂? Simply because researchers using prediction models are
more familiar with RMSE. If an error of 6 days is not more than twice as bad
than an error of 3 days, report MAE.

9.1.4.6 Prediction modeling is more sophisticated than presented
here

For data where the response is a non-linear function of the predictor, or for
data with many predictor variables, researchers will often build a model using
a model selection method. Stepwise regression is a classical model selection
method that is commonly taught in intro biostatistics and commonly used by
researchers. Stepwise regression as a method of model selection has many well-
known problems and should be avoided.

Some excellent books that are useful for building models and model selection
are

1. The Elements of Statistical Learning
2. Regression and Other Stories
3. Regression Modeling Strategies

9.1.5 Using a regression model for creating a new response
variable – comparing slopes of longitudinal data

In the study in this example, the researchers compared the growth rate of tumors
in mice fed normal chow versus mice with a methionine restricted diet. Growth
rate wasn’t actually compared. Instead, the researchers used a t-test to compare
the size of the tumor measured at six different days. A problem with multiple t-
tests for this dataset is that the errors (residuals from the model) on one day are
correlated with the errors from another day because of the repeated measures
on each mouse. This correlation will inflate Type I error rate.

Instead of six t-tests, a better strategy for these data is to use a regression to
calculate a tumor growth rate for each mouse. There are sixteen mice so this
is sixteen fit models. Here I use a “for loop” to fit the model to the data from

https://web.stanford.edu/~hastie/ElemStatLearn/
https://avehtari.github.io/ROS-Examples/
http://hbiostat.org/doc/rms/4day.html
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a single mouse and use the slope (b1) as the estimate of the tumor growth rate
for that mouse.

Use a for-loop to estimate growth rate for each mouse. In each pass through
the loop

1. the subset of fig1f (the data in long format) belonging to mouse i is created
2. the linear model volume ~ day is fit to the subset
3. the coefficient of day (the slope, b1) is inserted in mouse i’s row in the

column “growth” in the data.table “fig1f_wide”.

At the end of the loop, we have the data.table fig1f_wide which has one row
for each mouse, a column for the treatment factor (diet) and a column called
“growth” containing each mouse’s growth rate. There are also columns of tumor
volume for each mouse on each day but these are ignored.

N <- nrow(fig1f_wide)
id_list <- fig1f_wide[, id]
for(i in 1:N){
mouse_i_data <- fig1f[id == id_list[i]] # subset
fit <- lm(volume ~ day, data = mouse_i_data)
fig1f_wide[id == id_list[i], growth := coef(fit)[2]]

}
# View(fig1f_wide)
# qplot(x = treatment, y = growth, data = fig1f_wide)
# qplot(x = day, y = volume, color = treatment, data = fig1f) + geom_smooth(aes(group = id), method = "lm", se = FALSE)

Step 3. fit the model

m1 <- lm(growth ~ treatment, data = fig1f_wide)

Step 5. inference from the model

m1_coef <- summary(m1) %>%
coef

m1_ci <- confint(m1)
(m1_coef_table <- cbind(m1_coef, m1_ci))

## Estimate Std. Error t value Pr(>|t|) 2.5 %
## (Intercept) 52.63406 3.102096 16.967258 9.865155e-11 45.98072
## treatmentMR -23.57616 4.387026 -5.374065 9.809457e-05 -32.98540
## 97.5 %
## (Intercept) 59.28739
## treatmentMR -14.16693
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Step 6. plot the model
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9.1.6 Using a regression model for for calibration

9.2 Working in R

9.2.1 Fitting the linear model

A linear model is fit with the lm function, which is very flexible and will be a
workhorse in much of this text.

m1 <- lm(transition_date ~ temperature, data = fig2c)

m1 is an lm model object that contains many different kinds information, such
as the model coefficients.

coef(m1)

## (Intercept) temperature
## 289.458750 4.982745

We’ll return to others, but first, let’s explore some of the flexibility of the lm
function. Two arguments were sent to the function
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1. the model formula transition_date ~ temperature with the form Y ~
X, where Y and X are names of columns in the data.

• The model formula itself be assinged to a variable, which is useful when
building functions. An example

coef_table <- function(x, y, data){
m1_form <- formula(paste(y, "~", x))
m1 <- lm(m1_form, data = data)
return(coef(summary(m1)))

}

coef_table(x = "temperature",
y = "transition_date",
data = fig2c)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 289.458750 3.0593949 94.613071 1.738650e-13
## temperature 4.982745 0.5541962 8.990941 1.866888e-05

• Both Y and X can also be column names embedded within a function, for
example

m2 <- lm(log(transition_date) ~ temperature, data = fig2c)
coef(m2)

## (Intercept) temperature
## 5.6690276 0.0160509

or

m3 <- lm(scale(transition_date) ~ scale(temperature), data = fig2c)
coef(m3)

## (Intercept) scale(temperature)
## 6.484929e-16 9.539117e-01

2. The data frame (remember that a data.table is a data frame) containing
the columns with the variable names in the model formula. A data ar-
gument is not necessary but it is usually the better way (an exception is
when a researcher wants to create a matrix of Y variables or to construct
their own model matrix)

type ?lm into the console to see other arguments of the lm function.
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x <- fig2[, temperature]
y <- fig2[, transition_date]
m4 <- lm(y ~ x)
coef(m4)

## (Intercept) x
## 204.8866185 0.4324755

9.2.2 Getting to know the linear model: the summary func-
tion

The lm function returns an lm object, which we’ve assigned to the name m1. m1
contains lots of information about our fit of the linear model to the data. Most
of the information that we want for most purposes can be retrieved with the
summary function, which is a general-purpose R command the works with many
R objects.

summary(m1)

##
## Call:
## lm(formula = transition_date ~ temperature, data = fig2c)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.5062 -3.8536 0.6645 2.7537 9.0074
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 289.4588 3.0594 94.613 1.74e-13 ***
## temperature 4.9827 0.5542 8.991 1.87e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.443 on 8 degrees of freedom
## Multiple R-squared: 0.9099, Adjusted R-squared: 0.8987
## F-statistic: 80.84 on 1 and 8 DF, p-value: 1.867e-05

What is here:

Call. This is the model that was fit

Residuals. This is a summary of the distribution of the residuals. From this
one can get a sense of the distribution (for inference, the model assumes a normal
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distribution with mean zero). More useful ways to examine this distribution will
be introduced later in this chapter.

Coefficients table. This contains the linear model coefficients and their stan-
dard error and associated t and p values.

1. The column of values under “Estimate” are the coefficients of the fit-
ted model (equation (9.1)). Here, 289.4587503 is the intercept (b0) and
4.9827453 is the effect of temperature (b1).

2. The column of values under “Std. Error” are the standard errors of the
coefficients.

3. The column of values under “t value” are the t-statistics for each coef-
ficient. A t-value is a signal to noise ratio. The coefficient b1 is the
“signal” and the SE is the noise. Get used to thinking about this ratio. A
t-value greater than about 3 indicates a “pretty good” signal relative to
noise, while one much below than 2 is not.

4. The column of values under “Pr(>|t|)” is the p-value, which is the t-test
of the estimate. What is the p-value a test of? The p-value tests the
hypothesis “how probable are the data, or more extreme than than the
data, if the true parameter is zero?”. Formally p = freq(t′ ≥ t|Ho), where
t′ is the hypothetical t-value, t is the observed t-value, and Ho is the null
hypothesis. We will return to p-values in Chapter xxx.

Signif. codes. Significance codes are extremely common in the wet bench
experimental biology literature but do not have much to recommend. I’ll return
to these in the p-values chapter.

Beneath the Signif. codes are some model statistics which are useful

Residual standard error This is
√∑

e2
i /(n − 2), where ei are the residuals

in the fitted model. “degrees of freedom” is the number of ei that are “allowed
to vary” after fitting the parameters, so is the total sample size (n) minus the
number of parameters in the model. The fit model has two fit parameters (b0
and b1 so the df is n − 2. Note that this is the denominator in the residual
standard error equation.

Multiple R-squared. This is an important but imperfect summary measure
of the whole model that effectively measures how much of the total variance in
the response variable “is explained by” the model. Its value lies between zero
and 1. It’s a good measure to report in a manuscript, especially for
observational data.

F-statistic and p-value. These are statistics for the whole model (not the
individual coefficients) and I just don’t find these very useful.
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9.2.3 Inference – the coefficient table and Confidence in-
tervals

To get the coefficient table without the other statistics from summary, use
summary(m1) %>% coef().

m1_coeff <- summary(m1) %>%
coef()

m1_confint <- confint(m1)
m1_coeff <- cbind(m1_coeff, m1_confint)
m1_coeff

## Estimate Std. Error t value Pr(>|t|) 2.5 %
## (Intercept) 289.458750 3.0593949 94.613071 1.738650e-13 282.403773
## temperature 4.982745 0.5541962 8.990941 1.866888e-05 3.704767
## 97.5 %
## (Intercept) 296.513728
## temperature 6.260724

Note that the p-value for the coefficient for temperature is very small and we
could conclude that the data are not compatible with a model of no temperature
effect on day of green-down. But did we need a formal hypothesis test for this?
We haven’t learned much if we have only learned that the slope is “not likely
to be exactly zero” (Temperature effects everything in biology). A far more
important question is not if there is a relationship between temperature and
day of green-down, but what is the sign and magnitude of the effect and what is
the uncertainty in our estimate of this effect. For this, we we want the coefficient
and its SE or confidence interval, both of which are in this table. Remember,
our working definition of a confidence interval:

A confidence interval contains the range of parameter values that are
compatible with the data, in the sense that a t-test would not reject
the null hypothesis of a difference between the estimate and any value
within the interval

A more textbook way of defining a CI is: A 95% CI of a parameter has a 95%
probability of including the true value of the parameter. It does not mean that
there is a 95% probability that the true value lies in the interval. This is a subtle
but important difference. Here is a way of thinking about the proper meaning
of the textbook definition: we don’t know the true value of β1 but we can 1)
repeat the experiment or sampling, 2) re-estimate β1, and 3) re-compute a 95%
CI. If we do 1-3 many times, 95% of the CIs will include β1 within the interval.

Confidence intervals are often interpreted like p-values. That is, the researcher
looks to see if the CI overlaps with zero and if it does, concludes there is “no
effect”. First, this conclusion is not correct – the inability to find sufficient
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evidence for an effect does not mean there is no effect, it simply means
there is insufficient evidence to conclude there is an effect!

Second, what we want to use the CI for is to guide us about how big or small
the effect might reasonably be, given the data. Again, A CI is a measure of
parameter values that are “compatible” with the data. If our biological inter-
pretations at the small-end and at the big-end of the interval’s range radically
differ, then we don’t have enough precision in our analysis to reach an unam-
biguous conclusion.

9.2.4 How good is our model? – Model checking

There are two, quite different senses of what is meant by a good model.

1. How good is the model at predicting? Or, how much of the variance in
the response (the stuff to be “explained”) is accounted for by the model?
This was described above.

2. How well do the data look like a sample from the modeled distribution? If
not well, we should consider alternative models. This is model checking.

For inference, a good model generates data that look like the real data. If this
is true, our fit model will have well-behaved residuals. There are several aspects
of “well-behaved” and each is checked with a diagnostic plot. This model
checking is covered in more detail in chapter xxx.

Inference from model (9.4) assumes the data were sampled from a normal dis-
tribution. To check this, use a quantile-quantile or Q-Q plot. The qqPlot
function from the car package generates a more useful plot than that from Base
R.

set.seed(1)
qqPlot(m1, id=FALSE)
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Approximately normal residuals will track the solid line and stay largely within
the boundaries marked by the dashed lines. The residuals from m1 fit to the
green-down data track the solid line and remain within the dashed lines, indi-
cating adequate model fit.

Note that a formal test of normality is often recommended. Formal tests do
not add value above a diagnostic check. Robustness of inference (for example,
a p-value) is a function of the type and degree of “non-normalness”, not of a
p-value. For a small sample, there is not much power to test for normality, so
samples from non-normal distributions pass the test (p > 0.05) and are deemed
“normal”. For large samples, samples from distributions that deviate slightly
from normal fail the test (p < 0.05) and are deemed “not normal”. Inference
with many non-normal samples with large n are very robust (meaning infernece
is not likely to fool you with randomness).

Inference from model (9.4) assumes homogeneity of the response conditional on
X. For a continuous X, this means the residuals should have approximately
equal variance at low, mid, and high values of X (and everywhere in between).
One can visually inspect the spread of points in the Y direction across the groups
for categorical X or along the X-axis for continuous X. A useful method for
checking how residual variance changes (usually increases) with the conditional
mean of Y is a spread-location plot. The spreadLevelPlot(m1) function
from the car package is useful.

spreadLevelPlot(m1)
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##
## Suggested power transformation: 0.6721303

The dashed blue line shows linear trends while the magenta line shows non-
linear trends. For the green-down data, the dashed line is very flat while the
magenta-line shows what looks like random fluctations. Taken together, the two
lines indicate adequate model fit.

9.2.5 Plotting models with continuous X

9.2.5.1 Quick plot

qplot from the ggplot package is useful for initial examinations of the data
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qplot(x = temperature, y = transition_date, data = fig2c) + geom_smooth()
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Some variations of this quick plot to explore include

1. use geom_smooth(method = "lm")

9.2.5.2 ggpubr plots

ggpubr is a package with functions that automates the construction of
publication-ready ggplots. ggscatter can generate a publishable plot with
little effort.

ggscatter(data = fig2c,
x = "temperature",
y = "transition_date",
add = "reg.line",
xlab = "Added Temperature (°C)",
ylab = "Day of Green-down (DOY)")
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It take only a little more effort to add useful modifications.

ggscatter(data = fig2c,
x = "temperature",
y = "transition_date",
color = "black",
fill = "red",
shape = 21,
size = 3,
add = "reg.line",
add.params = list(color = "steelblue",

fill = "lightgray"),
conf.int = TRUE,
xlab = "Added Temperature (°C)",
ylab = "Day of Green-down (DOY)") +

stat_regline_equation(size = 4,
label.y = 340) +

stat_cor(aes(label = paste(..rr.label.., ..p.label.., sep = "~`,`~")),
size = 4,
label.y = 335) +

NULL
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y = 290 + 5 x

R2 = 0.91 , p = 1.9e−05
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Notes

1. The interval shown is the 95% confidence interval of the expected values,
which is what we want to communicate with the experimental green-down
data. Were we to want to use this as a prediction model, we would want
the 95% prediction interval. I’m not sure that ggpubr can plot a prediction
interval. To see how I plotted the prediction interval in Figure ?? above,
see the Hidden Code section below.

2. The arguments of the ggscatter function are typed in explicitly (x =
"temperarture" and not just "temperature"). Each argument starts on
a new line to increase readability.

3. The + after the ggscatter function adds additional layers to the plot.
Each additional component is started on a new line to increase readability.

4. The first line of the stat_cor function (everything within aes()) plots the
R2 instead of the correlation coefficient r. Copy and pasting this whole
line just works.

5. Comment out the line of the ggplot script starting with stat_cor and
re-run (comment out by inserting a # at the front of the line. A consistent
way to do this is to triple-click the line to highlight the line and then type
command-shift-c on Mac OS). The script runs without error because NULL
has been added as the final plot component. Adding “NULL” is a useful
trick.

ggscatter(data = efig_3d,
x = "autumn_temp_anomaly",
y = "green_down_anomaly",
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color = "black",
fill = "red",
shape = 21,
size = 3,
add = "reg.line",
add.params = list(color = "steelblue",

fill = "lightgray"),
conf.int = TRUE,
xlab = "Added Temperature (°C)",
ylab = "Day of Green-down (DOY)")
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9.2.5.3 ggplots

Use ggplot from the ggplot2 package for full control of plots. See the Hidden
Code below for how I generated the plots in Figure 9.1 above.

9.2.6 Creating a table of predicted values and 95% pre-
diction intervals

efig_3d is the data.table created from importing the data in Extended Data
Figure 3d above. The fit model is
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efig3d_m1 <- lm(green_down_anomaly ~ autumn_temp_anomaly, data = efig_3d)

The predict(efig3d_m1) function is used to compute either fitted or predicted
values, and either the confidence or prediction interval of these values.
Unless specified by newdata, the default x-values used to generate the y in
predict(efig3d_m1) are the x-values in the data used to fit the model. The
returned values are the expected value for each xi in the data. The argument
newdata passes a data.frame (remember a data.table is a data.frame!) with new
x-values. Since these x-values were not in the data used to fit the model, the
returned yhat are predicted values.
The range of x-values in the data is

range(efig_3d[,autumn_temp_anomaly])

## [1] -2.673793 2.568045

Let’s get predicted values for a value of autumn_temp_anomaly = 2.

predict(efig3d_m1, newdata = data.table(autumn_temp_anomaly = 2))

## 1
## 3.192646

And predicted values across the range of measured values

new_dt <- data.table(autumn_temp_anomaly = c(-2, -1, 1, 2))
predict(efig3d_m1, newdata = new_dt)

## 1 2 3 4
## -3.192646 -1.596323 1.596323 3.192646

Add 95% confidence intervals (this could be used to create the band for plotting)

predict(efig3d_m1,
newdata = new_dt,
interval = "confidence",
se.fit = TRUE)$fit

## fit lwr upr
## 1 -3.192646 -5.2485713 -1.1367215
## 2 -1.596323 -2.9492686 -0.2433778
## 3 1.596323 0.2433778 2.9492686
## 4 3.192646 1.1367215 5.2485713



9.2. WORKING IN R 251

Change to the 95% prediction intervals

predict(efig3d_m1,
newdata = new_dt,
interval = "prediction",
se.fit = TRUE)$fit

## fit lwr upr
## 1 -3.192646 -12.833739 6.448446
## 2 -1.596323 -11.112325 7.919679
## 3 1.596323 -7.919679 11.112325
## 4 3.192646 -6.448446 12.833739

Put this all together in a pretty table. I’ve used knitr’s kable function but there
are table packages in R that allow extensive control of the output.

efig3d_m1 <- lm(green_down_anomaly ~ autumn_temp_anomaly, data = efig_3d)
new_dt <- data.table(autumn_temp_anomaly = c(-2, -1, 1, 2))
prediction_table <- predict(efig3d_m1,

newdata = new_dt,
interval = "prediction",
se.fit = TRUE)$fit

prediction_table <- data.table(new_dt, prediction_table)
pretty_names <- c("Autumn Temp Anomaly", "Estimate", "2.5%", "97.5%")
setnames(prediction_table, old = colnames(prediction_table), new = pretty_names)
knitr::kable(prediction_table, digits = c(1, 1, 1, 1))

Autumn Temp Anomaly

Estimate

2.5%

97.5%

-2

-3.2

-12.8

6.4

-1

-1.6

-11.1

7.9
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1

1.6

-7.9

11.1

2

3.2

-6.4

12.8

9.3 Hidden code

9.3.1 Import and plot of fig2c (ecosystem warming exper-
imental) data

Import

data_from <- "Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures"
file_name <- "41586_2018_399_MOESM3_ESM.xlsx"
file_path <- here(data_folder, data_from, file_name)
fig2 <- read_excel(file_path) %>% # import
clean_names() %>% # clean the column names
data.table() # convert to data.table

# View(fig2)

fig2c <- fig2[panel == "2c",]
# View(fig2c)

Creating the response plot (the bottom component)

m1_b <- coef(m1)
m1_ci <- confint(m1)
m1_b0_text <- paste0("Intercept: ",

round(m1_b[1],1),
" (",
round(m1_ci[1,1],1),
", ",
round(m1_ci[1,2],1),
") d")

m1_b1_text <- paste0("Slope: ",
round(m1_b[2],2),
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" (",
round(m1_ci[2,1],2),
", ",
round(m1_ci[2,2],2),
") d per 1 °C")

# regression line
m1_x <- min(fig2c[, temperature])
m1_xend <- max(fig2c[, temperature])
m1_y <- m1_b[1] + m1_b[2]*m1_x
m1_yend <- m1_b[1] + m1_b[2]*m1_xend

fig2c_gg_response <- ggplot(data = fig2c,
aes(x = temperature,

y = transition_date)) +

# regression line first, to not block point
geom_segment(x = m1_x,

y = m1_y,
xend = m1_xend,
yend = m1_yend) +

# create black edge to points
# geom_point(size = 4,
# color = "black") +
geom_point(size = 3,

color = pal_okabe_ito[1]) +
scale_x_continuous(breaks = c(0, 2.25, 4.5, 6.75, 9)) +
xlab("Plot temperature (ΔT, °C)") +
ylab("Autumn green-down (DOY)") +
theme_pubr() +

NULL

# fig2c_gg_response

Creating the effects plot (the top component)

m1_coeff_dt <- data.table(term = row.names(m1_coeff),
data.table(m1_coeff))[2,] %>%

clean_names()
m1_coeff_dt[ , p_pretty := pvalString(pr_t)]

min_bound <- min(m1_coeff_dt[, x2_5_percent])
max_bound <- min(m1_coeff_dt[, x97_5_percent])
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y_lo <- min(min_bound+min_bound*0.2,
-max_bound)

y_hi <- max(max_bound + max_bound*0.2,
-min_bound)

y_lims <- c(y_lo, y_hi)

fig2c_gg_effect <- ggplot(data=m1_coeff_dt,
aes(x = term,

y = estimate)) +
# confidence level of effect
geom_errorbar(aes(ymin=x2_5_percent,

ymax=x97_5_percent),
width=0,
color="black") +

# estimate of effect
geom_point(size = 3) +

# zero effect
geom_hline(yintercept=0, linetype = 2) +

# p-value
annotate(geom = "text",

label = m1_coeff_dt$p_pretty,
x = 1,
y = 7.5) +

# aesthetics
scale_y_continuous(position="right") +
scale_x_discrete(labels = "Temperature\neffect") +
ylab("Effects (day/°C)") +
coord_flip(ylim = y_lims) +
theme_pubr() +
theme(axis.title.y = element_blank()) +

NULL

#fig2c_gg_effect

Combining the response and effects plots into single plot

fig3d_fig <- plot_grid(fig2c_gg_effect,
fig2c_gg_response,
nrow=2,
align = "v",
axis = "lr",
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rel_heights = c(0.4,1))
fig3d_fig

9.3.2 Import and plot efig_3d (Ecosysem warming obser-
vational) data

Import

data_from <- "Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures"
file_name <- "41586_2018_399_MOESM6_ESM.xlsx"
file_path <- here(data_folder, data_from, file_name)
efig_3d <- read_excel(file_path,

range = "J2:K87",
col_names = FALSE) %>% # header causing issues

data.table() # convert to data.table
setnames(efig_3d, old = colnames(efig_3d), new = c("autumn_temp_anomaly", "green_down_anomaly"))

# View(efig_3d)

Plot

m1 <- lm(green_down_anomaly ~ autumn_temp_anomaly, data = efig_3d)

# get x for drawing slope
minx <- min(efig_3d[,autumn_temp_anomaly])
maxx <- max(efig_3d[,autumn_temp_anomaly])
new_x <- seq(minx, maxx, length.out = 20)
new_data <- data.table(autumn_temp_anomaly = new_x)
new_data[, yhat := predict(m1, newdata = new_data)]
new_data[, conf_lwr := predict(m1,

se.fit = TRUE,
interval = "confidence",
newdata = new_data)$fit[, "lwr"]]

new_data[, conf_upr := predict(m1,
se.fit = TRUE,
interval = "confidence",
newdata = new_data)$fit[, "upr"]]

new_data[, pred_lwr := predict(m1,
se.fit = TRUE,
interval = "prediction",
newdata = new_data)$fit[, "lwr"]]

new_data[, pred_upr := predict(m1,
se.fit = TRUE,
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interval = "prediction",
newdata = new_data)$fit[, "upr"]]

gg <- ggscatter(data = efig_3d,
x = "autumn_temp_anomaly",
y = "green_down_anomaly",
color = "black",
shape = 21,
size = 3,
add = "reg.line",
add.params = list(color = "steelblue",

fill = "lightgray"),
xlab = "Temperature Anomaly (°C)",
ylab = "Day of Green-down Anomaly (DOY)") +

geom_ribbon(data = new_data,
aes(ymin = pred_lwr,

ymax = pred_upr,
y = yhat,
fill = "band"),

fill = "gray",
alpha = 0.3) +

geom_ribbon(data = new_data,
aes(ymin = conf_lwr,

ymax = conf_upr,
y = yhat,
fill = "band"), alpha = 0.3) +

stat_cor(aes(label = paste(..rr.label.., ..p.label.., sep = "~`,`~")),
size = 4,
label.y = 10) +

scale_fill_manual(values = pal_okabe_ito) +

theme(legend.position="none") +

NULL

gg
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9.3.3 Import and plot of fig1f (methionine restriction)
data

Import

data_from <- "Dietary methionine influences therapy in mouse cancer models and alters human metabolism"
file_name <- "41586_2019_1437_MOESM2_ESM.xlsx"
file_path <- here(data_folder, data_from, file_name)

fig1f_wide <- read_excel(file_path,
sheet = "f",
range = "B7:R12",
col_names = FALSE) %>%

data.table() # convert to data.table

setnames(fig1f_wide,
old = colnames(fig1f_wide),
new = c("day",

paste0("Cn_", 1:8),
paste0("MR_", 1:8)))

fig1f_wide <- transpose(fig1f_wide, make.names = 1, keep.names = "id")
fig1f_wide[, treatment := factor(substr(id, 1, 2))]

days <- c(21, 25, 28, 30, 34, 39)
fig1f <- melt(fig1f_wide,

id.vars <- c("treatment", "id"),
measure.vars <- as.character(days),
variable.name = "day",
value.name = "volume")

fig1f[, day := as.numeric(as.character(day))]
# View(fig1f)
# qplot(x = day, y = volume, color = treatment, data = fig1f) + geom_line(aes(group = id))

Creating the response plot (the bottom component)

fig1f_gg_response <- ggplot(data = fig1f,
aes(x = day, y = volume, color = treatment)) +

geom_point() +
geom_smooth(aes(group = id), method = "lm", se = FALSE) +
xlab("Day") +
ylab(expression(Tumor~Volume~(mm^3))) +
scale_color_manual(values = pal_okabe_ito) +
theme_pubr() +
theme(
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legend.position = c(.15, .98),
legend.justification = c("right", "top"),
legend.box.just = "right",
legend.margin = margin(6, 6, 6, 6),
legend.title = element_blank()
) +

NULL

# fig1f_gg_response

Creating the effects plot (the top component)

m1_coeff_dt <- data.table(term = row.names(m1_coef_table),
data.table(m1_coef_table))[2,] %>%

clean_names()
m1_coeff_dt[ , p_pretty := pvalString(pr_t)]

min_bound <- min(m1_coeff_dt[, x2_5_percent])
max_bound <- min(m1_coeff_dt[, x97_5_percent])

y_lo <- min(min_bound+min_bound*0.2,
-max_bound)

y_hi <- max(max_bound + max_bound*0.2,
-min_bound)

y_lims <- c(y_lo, y_hi)

fig1f_gg_effect <- ggplot(data=m1_coeff_dt,
aes(x = term,

y = estimate)) +
# confidence level of effect
geom_errorbar(aes(ymin=x2_5_percent,

ymax=x97_5_percent),
width=0,
color="black") +

# estimate of effect
geom_point(size = 3) +

# zero effect
geom_hline(yintercept=0, linetype = 2) +

# p-value
annotate(geom = "text",

label = m1_coeff_dt$p_pretty,
x = 1,
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y = 7.5) +

# aesthetics
scale_y_continuous(position="right") +
scale_x_discrete(labels = "MR\neffect") +
ylab(expression(Growth~(mm^3/day))) +
coord_flip(ylim = y_lims) +
theme_pubr() +
theme(axis.title.y = element_blank()) +

NULL

#fig1f_gg_effect

Combining the response and effects plots into single plot

fig1f_gg <- plot_grid(fig1f_gg_effect,
fig1f_gg_response,
nrow=2,
align = "v",
axis = "lr",
rel_heights = c(0.4,1))

fig1f_gg

9.4 Try it

9.4.1 A prediction model from the literature

The data come from the top, middle plot of Figure 1e of

Parker, B.L., Calkin, A.C., Seldin, M.M., Keating, M.F., Tarling, E.J., Yang,
P., Moody, S.C., Liu, Y., Zerenturk, E.J., Needham, E.J. and Miller, M.L.,
2019. An integrative systems genetic analysis of mammalian lipid metabolism.
Nature, 567(7747), pp.187-193.

Public source

Source data

The researchers built prediction models from a hybrid mouse diversity panel
(HMDP) to predict liver lipid levels from measured plasma lipid levels in mice
and in humans. The value of the predictor (X) variable for an individual is
not a measured value of a single plasma lipid but the predicted value, or score,
from the prediction model based on an entire panel of lipid measurements in
that individual. The Y variable for the individual is the total measured level

https://idp.nature.com/authorize/casa?redirect_uri=https://www.nature.com/articles/s41586-019-0984-y&casa_token=9rpBLACc40cAAAAA:BzRKQHYdU9DOrzBS0f0lwrbp07MlfVqqL4yuyedE5b_xZ8geHuUCPFIDE3yQUBO-ibQLCrCI4t84aO8
https://idp.nature.com/authorize/casa?redirect_uri=https://www.nature.com/articles/s41586-019-0984-y&casa_token=9rpBLACc40cAAAAA:BzRKQHYdU9DOrzBS0f0lwrbp07MlfVqqL4yuyedE5b_xZ8geHuUCPFIDE3yQUBO-ibQLCrCI4t84aO8
https://idp.nature.com/authorize/casa?redirect_uri=https://www.nature.com/articles/s41586-019-0984-y&casa_token=9rpBLACc40cAAAAA:BzRKQHYdU9DOrzBS0f0lwrbp07MlfVqqL4yuyedE5b_xZ8geHuUCPFIDE3yQUBO-ibQLCrCI4t84aO8
https://idp.nature.com/authorize/casa?redirect_uri=https://www.nature.com/articles/s41586-019-0984-y&casa_token=9rpBLACc40cAAAAA:BzRKQHYdU9DOrzBS0f0lwrbp07MlfVqqL4yuyedE5b_xZ8geHuUCPFIDE3yQUBO-ibQLCrCI4t84aO8
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6656374/
https://www.nature.com/articles/s41586-019-0984-y#Sec35
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across a family of lipids (ceramides, triacylglycerols, diacylglycerols) in the liver
of the individual. The question is, how well does the prediction score predict
the actual liver level?

1. Use the data for TG (triacylglycerols) (the top, middle plot of Figure 1e).
The column D is the “score” from the prediction model using plasma lipid
levels. This is the X variable (the column header is “fitted.total.Cer”).
The column E is the total measured liver TG, so is the Y variable.

2. Fit the linear model y ~ x.
3. Create a publication-quality plot of liver TG (Y -axis) against score (X-

axis) – what the researchers labeled “fitted.total.Cer”. Include R2 on the
plot.

4. Advanced – add a 95% prediction interval to the plot (the template code
for this is in the Hidden Code section for efig3d)

5. Create a table of expected liver TG and 95% prediction interval of liver
TG of the score values (13.5, 14, 14.5, 15, 15.5, 16).

6. Comment on the predictability of liver TG using the plasma scores.

‘

9.5 Intuition pumps

9.5.1 Correlation and $R^2

In the code below

1. change the value of n to explore effect on the variability of the estimate.
Look at this variability, and the magnitude of the SE, and the magnitude
of the p-value.

2. change the value of beta_1 to explore effect on what different slopes
and correlations look like. Notice that if the variance is fixed (as in this
simulation) the expected slope and expected correlation are equal. (Be-
cause I’ve fixed the variance in this simple simulation, this code will fail
if abs(beta_1) >= 1).

n <- 100 # choose between 3 and 10^5
beta_1 <- 0.6 # choose a value between -0.99 and 0.99
x <- rnorm(n)
y <- beta_1*x + sqrt(1-beta_1^2)*rnorm(n)
m1 <- lm(y ~ x)
slope <- paste("b_1: ", round(coef(m1)[2], 3))
se <- paste("SE: ", round(coef(summary(m1))[2,2], 3))
r <- paste("r: ", round(cor(x,y), 3))
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r2 <- paste("R^2: ", round(summary(m1)$r.squared, 3))
ggscatter(data = data.table(x=x, y=y), x = "x", y = "y",

add = "reg.line") +
ggtitle(label = paste(slope,se,r,r2,sep="; "))

−2

0

2

−2 −1 0 1 2
x

y

b_1:  0.691;  SE:  0.077;  r:  0.672;  R^2:  0.452
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Chapter 10

Linear models with a single,
categorical X

10.1 A linear model with a single, categorical X
variable estimates the effects of the levels
of X on the response.

To introduce a linear model with a single, categorical X variable, I’ll use data
from a set of experiments designed to measure the effect of the lipid 12,13-
diHOME on brown adipose tissue (BAT) thermoregulation and the mechanism
of this effect.

Lynes, M.D., Leiria, L.O., Lundh, M., Bartelt, A., Shamsi, F., Huang, T.L.,
Takahashi, H., Hirshman, M.F., Schlein, C., Lee, A. and Baer, L.A., 2017. The
cold-induced lipokine 12, 13-diHOME promotes fatty acid transport into brown
adipose tissue. Nature medicine, 23(5), pp.631-637.

Public source

Data source

Download the source data files and move to a new folder named “The cold-
induced lipokine 12,13-diHOME promotes fatty acid transport into brown adi-
pose tissue”.

Cold temperature and the neurotransmitter/hormone norepinephrine are known
to stimulate increased thermogenesis in BAT cells. In this project, the re-
searchers probed the question “what is the pathway that mediates the effect of
cold-exposure on BAT thermogenesis?”. In the “discovery” component of this
project, the researchers measured plasma levels of 88 lipids with known signal-
ing properties in humans exposed to one hour of both normal (20 °C) and cold
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https://www.nature.com/articles/nm.4297
https://www.nature.com/articles/nm.4297
https://www.nature.com/articles/nm.4297
https://www.nature.com/articles/nm.4297
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5699924/pdf/nihms916046.pdf
https://www.nature.com/articles/nm.4297#Sec14
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temperature (14 °C) temperature. Of the 88 lipids, 12,13-diHOME had the
largest response to the cold treatment. The researchers followed this up with
experiments on mice.

10.1.1 Example 1 – two treatment levels (“groups”)

Let’s start with the experiment in Figure 3d, which was designed to measure
the effect of 12,13-diHOME on plasma triglyceride level. If 12,13-diHOME
stimulates BAT activity, then levels in the 12,13-diHOME mice should be less
than levels in the control mice.

response variable: serum_tg, a continuous variable.

treatment variable: treatment, with levels: “Vehicle”, “12,13-diHOME” (the
control or “Vehicle” mice were injected with saline). Coded as a factor.

design: single, categorical X

10.1.1.1 Step 1 – import

The first step in any analysis is to open the data and, if necessary, wrangle into
an analyzable format. The script to import these data is in the section Hidden
code below.

10.1.1.2 Step 2 – examine the data

The second step is to examine the data to

6. get a sense of sample size and balance
7. check for biologically implausible outliers that suggest measurement fail-

ure, or transcription error (from a notebook, not in a cell)
8. assess outliers for outlier strategy or robust analysis
9. assess reasonable distributions and models for analysis.

qplot(x = treatment, y = serum_tg, data = fig_3d)
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# ggdotplot(x = "treatment", y = "serum_tg", data = fig_3d)

There are no obviously implausible data points. A normal distribution is a good,
reasonable start. This can be checked more thoroughly after fitting the model.

10.1.1.3 Step 3 – fit the model

fig3d_m1 <- lm(serum_tg ~ treatment, data = fig_3d)

10.1.1.4 Step 4 – check the model

set.seed(1)
qqPlot(fig3d_m1, id=FALSE)
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The Q-Q plot indicates the distribution of residuals is well within that expected
for a normal sample and there is no cause for concern with inference.

spreadLevelPlot(fig3d_m1, id=FALSE)
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##
## Suggested power transformation: 0.8167264

The spread-location plot shows no conspicuous trend in how the spread changes
with the conditonal mean. There is no cause for concern with inference.
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10.1.1.5 Step 5 – inference

10.1.1.5.1 coefficient table

fig3d_m1_coef <- cbind(coef(summary(fig3d_m1)),
confint(fig3d_m1))

fig3d_m1_coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 42.620042 1.667226 25.563447 1.926081e-10
## treatment12,13-diHOME -7.167711 2.357813 -3.039982 1.246296e-02
## 2.5 % 97.5 %
## (Intercept) 38.90523 46.334853
## treatment12,13-diHOME -12.42125 -1.914175

#knitr::kable(fig3d_m1_coef, digits = c(1,2,1,4,1,1))

10.1.1.5.2 Marginal means table

(fig3d_m1_emm <- emmeans(fig3d_m1, specs = "treatment"))

## treatment emmean SE df lower.CL upper.CL
## Vehicle 42.6 1.67 10 38.9 46.3
## 12,13-diHOME 35.5 1.67 10 31.7 39.2
##
## Confidence level used: 0.95

10.1.1.5.3 Contrasts table

(fig3d_m1_pairs <- contrast(fig3d_m1_emm,
method = "revpairwise") %>%

summary(infer = TRUE))

## contrast estimate SE df lower.CL upper.CL t.ratio p.value
## 12,13-diHOME - Vehicle -7.17 2.36 10 -12.4 -1.91 -3.040 0.0125
##
## Confidence level used: 0.95
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10.1.1.6 Step 6 – plot the model

The script for plotting the model in the section Hidden code below.
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10.1.1.7 Step 7 – report the model results

Mean serum TG in mice with 12,13-diHOME (35.5 µg/dL, 95% CI: 31.7, 39.2)
was 7.17 µg/dL less (95% CI: -12.4, -1.9, p = 0.012) than mean serum TG in
control mice (42.6 µg/dL, 95% CI: 38.9, 46.3).

10.1.2 Understanding the analysis with two treatment lev-
els

The variable treatment in the Figure 3d mouse experiment, is a single, cate-
gorical X variable. In a linear model, categorical variables are called factors.
treatment can take two different values, “Vehicle” and “12,13-diHOME”. The
different values in a factor are the factor levels (or just “levels”). “Levels”
is a strange usage of this word; a less formal name for levels is “groups”. In a
Nominal categorical factor, the levels have no units and are unordered, even if
the variable is based on a numeric measurement. For example, I might design
an experiment in which mice are randomly assigned to one of three treatments:
one hour at 14 °C, one hour at 18 °C, or one hour at 26 °C. If I model this treat-
ment as a nominal categorical factor, then I simply have three levels. While I
would certainly choose to arrange these levels in a meaningful way in a plot,
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for the analysis itself, these levels have no units and there is no order. Ordinal
categorical factors have levels that are ordered but there is no information on
relative distance. The treatment at 18 °C is not more similar to 14 °C than to
26 °C. Nominal categorical factors is the default in R and how all factors are
analyzed in this text.

10.1.2.1 Linear models are regression models

The linear model fit to the serum TG data is

serum_tg = treatment + ε (10.1)
ε N(0, sigma2) (10.2)

This specification is potentially confusing because the variable treatment is a
factor containing the words “Vehicle” and “12,13-diHOME” and not numbers.
A linear model with a single factor containing two levels can be specified using
notation for a regression model.

Y = β0 + β1X1 + ε (10.3)
ε ∼ N(0, σ2) (10.4)

Model (10.4) is a regression model where X1 is not the variable treatment,
containing the words “Vehicle” or “12,13-diHOME” but a numeric variable that
indicates group membership, containing the number 1 if the element belongs to
the first non-reference level (if there are only two levels, then there is only a
single, non-reference level) and the number 0 if the element doesn’t belong to
the first non-reference level.

For the serum TG data, “Vehicle” is the reference, so we can write the linear
model fit to the serum TG data using regression model notation.

serum_tg = β0 + β1treatment12,13−diHOME + ε (10.5)
ε ∼ N(0, σ2) (10.6)

Model (10.6) is a regression model where treatment12,13−diHOME is not the
variable treatment, containing the words “Vehicle” or “12,13-diHOME” but a
numeric variable that indicates membership in the level “12,13-diHOME”. This
variable contains the number 1 if the element belongs to “12,13-diHOME” and
the number 0 if the element doesn’t belong to “12,13-diHOME”. More generally,
model (10.4) is a regression model where X1 contains the number 1 if the element
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belongs to the first non-reference level (if there are only two levels, then there is
only a single, non-reference level) and the number 0 if the element doesn’t belong
to the first non-reference level. If there were a third level within treatment
(say, a 12,13-diHOME inhibitor), there would be a second X variable added
to the model (X2), which would contain the number 1 if the element belongs
to the second non-reference level (12,13-diHOME inhibitor) and the number 0,
otherwise.

The X variables in the regression model notation that indicate group mem-
bership are called indicator variables. There are several ways of coding in-
dicator variables and the way described here is called dummy or treatment
coding. This text will typically call dummy-coded indicator variables dummy
variables. The lm function creates these dummy variables under the table, in
something called the model matrix. You won’t see these columns in your data
but if you did, they would look like this

treatment

serum_tg

treatment12,13-diHOME

Vehicle

42.35908

0

Vehicle

43.82046

0

Vehicle

39.01879

0

Vehicle

48.72651

0

Vehicle

45.17745

0

Vehicle

36.61795

0
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12,13-diHOME

36.09603

1

12,13-diHOME

32.12944

1

12,13-diHOME

33.38205

1

12,13-diHOME

41.52401

1

12,13-diHOME

31.71190

1

12,13-diHOME

37.87056

1

R names dummy variables by combining the names of the factor and the name
of the level within the factor. So the X variable that R creates in the model
matrix for the fit linear model in model (10.4) is treatment12, 13 − diHOME.
You can see these names as terms in the coefficient table of the fit model.

Analysis fail. There are alternatives to dummy coding for creating indicator
variables. Dummy coding is the default in R and it makes sense when thinking
about experimental data with an obvious control level. I also like the interpre-
tation of a “interaction effect” using Dummy coding. The classical coding for
ANOVA is deviation effect coding, which creates coefficients that are deviations
from the grand mean. In contrast to R, Deviation coding is the default in many
statistical software packages including SAS, SPSS, and JMP. The method of
coding can make a difference in an ANOVA table. Watch out for this – I’ve
come across numerous published papers where the researchers used the default
dummy coding but interpreted the ANOVA table as if they had used deviation
coding. This is both getting ahead of ourselves and somewhat moot, because I
don’t advocate publishing ANOVA tables.



272CHAPTER 10. LINEAR MODELS WITH A SINGLE, CATEGORICAL X

10.1.2.2 The “Estimates” in the coefficient table are estimates of the
parameters of the linear model fit to the data.

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 42.620042 1.667226 25.563447 1.926081e-10
## treatment12,13-diHOME -7.167711 2.357813 -3.039982 1.246296e-02
## 2.5 % 97.5 %
## (Intercept) 38.90523 46.334853
## treatment12,13-diHOME -12.42125 -1.914175

The linear model (10.6) fit to the serum TG data has three parameters, including
two in the regression equation. The “estimates” in the coefficient table are the
estimates of the regression parameters β0 and β1. These estimates are the
coefficients of the fit model

serum_tg = b0 + b1β1treatment12,13−diHOME + e (10.7)

The coefficients b0 and b1 are the two values in the column “Estimate” of the
table of model coefficients (or “coefficient table”). In addition to the estimates,
the table inlcludes the standard error, 95% confidence interval, and t and p-
values of each estimate.

10.1.2.3 The parameters of a linear model using dummy coding have
an impoortant interpretation

It is important to understand the interpretation of the coefficients of the fit
linear model @??eq:fit-serum-tg). The “coefficient” b0 is the first value in the
“Estimate” column of the coefficient table (in the row “(intercept)”). This is
the conditional mean of the response for the reference level, which is “Vehi-
cle”. Remember that a conditional mean is the mean of a group that all have
the same value for one or more X variables. The coefficient b1 is the second
value in the “Estimate” column (in the row “treatment12,13-diHOME”). b1 is
the difference between the conditional means of the 12,13-diHOME level and
the reference (Vehicle) level. The direction of this difference is important; it is
Ȳ12,13−diHOME − ȲV ehicle, that is, the non-reference level minus the reference
level. The estimate for treatment12,13-diHOME is the effect that we are in-
terested in. Specifically, it is the effect of 12,13-diHOME on serum TG. When
we inject 12,13-diHOME, we find the mean serum TG decreases by -7.2 µg/dL
relative to the mean serum TG in the mice that were injected with saline. Im-
portantly, the reference level is not a property of an experiment but is set by
whomever is analyzing the data. Since the non-reference estimates are differ-
ences in means, it often makes sense to set the “control” treatment level as the
reference level.
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Figure 10.1: What the coefficients of a linear model with a single categorical X
mean. The means of the two treatment levels for the serum TG data are shown
with the filled circles. The intercept (b0) is the mean of the reference treatment
level. The coefficient b1 is the difference between the treatment level’s mean and
the reference mean. As with a linear model with a continuous X, the coefficients
are effects.

The intercept estimates the true, mean serum TG in a hypothetical population
of mice that have been given saline but not 12,13-diHOME. The treatment12,13-
diHOME value estimates the true, difference in means between a hypothetical
population of mice that have been given 12,13-diHOME and a population that
has been given only saline.

tl;dr. What is a population? In the experimental biology examples in this text,
we might consider the population as a very idealized, infinitely large set of mice,
or fish, or fruit flies, or communities from which our sample is a reasonably
representative subset. For the experiments in the 12,13-diHOME study, the
population might be conceived of as the hypothetical, infinitely large set of 12-
week-old, male, C57BL/6J mice, raised in the mouse facility at Joslin Diabetes
Center. An even more abstract way to way to think about what the population
could be is the infinitely large set of values that could generated by the linear
model.

Let’s put this all together. b0 is the conditional mean of the reference level
(“Vehicle”) and is an estimate of β0, the true, conditional mean of the popula-
tion. b1 is the difference in the conditional means of the first non-reference level
(“12,13-diHOME”) and the reference level (“Vehicle”) and is an estimate of β1,
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the true difference in the conditional means of the population with and without
the treatment 12,13-diHOME.

10.1.2.4 The table of marginal means is a table of modeled means
and inferential statistics, not a table of raw means and in-
ferential statistics

The table of marginal means for the model fit to the Figure 3d serum TG data
is (shown to five decimal places for a later comparison)

treatment

emmean

SE

df

lower.CL

upper.CL

Vehicle

42.62004

1.66723

10

38.90523

46.33485

12,13-diHOME

35.45233

1.66723

10

31.73752

39.16714

A marginal mean is the mean of a set of conditional means and is, conse-
quently, a modeled mean (it comes from a model). The table of marginal
means (“marginal means table) outputs the specified marginal means and the
standard error and 95% confidence interval of each mean. There is no test-
statistic with a p-value because there is no significance test. The specified
marginal means table of the Figure 3d data is not too exciting because it simply
contains the conditional means – the values are not marginalized over any X. In
several sections of this text, the marginal means table will contain values that
average conditional means over one or more factors. The marginal means table
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also computes these means as the expected value (mean) at the average value
of a continuous covariate, if any covariates are in the linear model. Because the
marginal means table contains different sorts of means (conditional, marginal,
adjusted), this text will generally refer to the means in this table as”modeled
means”.

If the design is balanced, meaning the sample size for each conditional mean is
the same, then a marginal mean will simply equal the average of the individual
values. But, this is not the case for unbalanced designs. For example, if we
unbalance the Figure 3d data by throwing out the first row of and refit the model,
the raw mean of serum_tg is 38.734 and the marginal mean, marginalized over
treatment, is 39.062.

Like the modeled means, the standard errors in the marginal means table are
modeled and not raw values. Recall that the standard error of a mean is s√

n
,

where s is the sample standard deviation. In the marginal means table, s is not
the raw standard deviation of the group but the estimate of σ, the square root of
the true variance. As with the raw standard error of the mean, the denominator
is the sample size n for the group. Since the numerator of the modeled SE is
the same for all groups, the modeled SE will be the same in all groups that
have the same sample size, as seen in the marginal means table for the model
fit to the Figure 3d data. This may seem odd. It is not. Remember that an
assumption of the linear model is homogeneity of variances – that the ei for
each group are drawn from N(0, σ2) regardless of group. s2, which is computed
as a variance of the model residuals, is an estimate this true variance (σ2). It
is also useful to think of the raw variances computed separately for each group
(level of treatment) as estimates of σ2. The separately computed estimates are
averaged to create a single estimate, which is equal to s2 computed from the
model residuals.

Unlike the modeled means, the modeled standard error and confidence interval
will, effectively, never equal the raw values.

10.1.2.5 Report the modeled means and inferential statistics from
the marginal means table, not the raw means and inferential
statistics

This text advocates the best practice of reporting, including plotting, the mod-
eled means and inferential statistics (SEM or confidence interval) and not the
raw means and summary statistics, because only the modeled means and statis-
tics are consistent with the modeled statistical analysis. Raw means and sum-
mary statistics can both mask the effects that we want to communicate and give
misleading interpretation of the statistics, including the conditional distribution
of the data.

The raw, group means and standard errors of each mean of the Figure 3d serum
TG are
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fig_3d[, .(mean = mean(serum_tg),
SE = sd(serum_tg)/sqrt(.N)),

by = treatment]

## treatment mean SE
## 1: Vehicle 42.62004 1.773251
## 2: 12,13-diHOME 35.45233 1.553984

The raw means are equal to the modeled means but the SE differs.

10.1.2.6 Estimates of the effects are in the contrasts table

fig3d_m1_pairs

## contrast estimate SE df lower.CL upper.CL t.ratio p.value
## 12,13-diHOME - Vehicle -7.17 2.36 10 -12.4 -1.91 -3.040 0.0125
##
## Confidence level used: 0.95

This table is important for reporting treatment effects and CIs and for plotting
the model. A contrast is a difference in means. With only two treatment levels,
the table of contrasts doesn’t give any more information than the coefficient
table – the single contrast is the coefficient b1 in the coefficient table. Neverthe-
less, I advocate computing this table to stay consistent and because the script
to plot the model uses this table and not the coefficient table.
The values in the column “estimate” is the simple difference of groups given
in the contrast column (what you would compute if you simply computed the
difference for these groups). This is true for this model, but is not generally
true.
The values in the “SE” column are standard errors of a difference (SED), specif-
ically the difference in the estimate column. These SEs are from the fit model
using the pooled estimate of σ.
The values in the “lower.CL” and “upper.CL” columns are the bounds of the
95% confidence interval of the estimate. This confidence level applies to the
procedure and not the estimate. Think of this interval as containing potential
values of the true parameter (the true difference in means between the two
groups) that are reasonably compatible with the data. More formally, it is
correct to interpret this CI as “95% of the CIs computed using this procedure
include the true value given the model conditions.”
The columns “t.ratio” and “p.value” contains the t and p values of the signifi-
cance (not hypothesis!) test of the estimate. The t-statistic is the ratio of the
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estimate to the SE of the estimate (use the console to confirm this given the
values in the table). It is a signal (the estimate) to noise (SE of the estimate)
ratio. The p-value is the probability of sampling the same distribution, fiting
the linear model, and observing a t-value as or more extreme than the observed
t. A very small p-value is consistent with the experiment “not sampling from
distributions with the same mean” – meaning that adding a treatment affects
the mean of the distribution. This is the logic used to infer a treatment effect.
Unfortunately, it is also consistent with the experiment not approximating other
conditions of the model, including non-random assignment, non-independence,
non-normal conditional responses, and variance heterogeneity. It is up to the
rigorous researcher to be sure that these other model conditions are approxi-
mated or “good enough” to use the p-value to infer a treatment effect on the
mean.

10.1.2.7 t and p from the contrasts table – when there are only two
levels in X – are the same as t and p from a t-test

Compare

m1 <- lm(serum_tg ~ treatment, data = fig_3d)
m1_pairs <- emmeans(m1, specs = "treatment") %>%

contrast(method = "revpairwise") %>%
summary(infer = TRUE)

m1_pairs

## contrast estimate SE df lower.CL upper.CL t.ratio p.value
## 12,13-diHOME - Vehicle -7.17 2.36 10 -12.4 -1.91 -3.040 0.0125
##
## Confidence level used: 0.95

m2 <- t.test(serum_tg ~ treatment,
data = fig_3d,
var.equal = TRUE)

glance(m2) # glance is from the broom package

## # A tibble: 1 x 10
## estimate estimate1 estimate2 statistic p.value parameter conf.low
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 7.17 42.6 35.5 3.04 0.0125 10 1.91
## # ... with 3 more variables: conf.high <dbl>, method <chr>,
## # alternative <chr>

Notes
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1. The “statistic” in the output contains the t-value of the t-test. It is equal
in magnitude but opposite in sign to that in the contrast table from the
linear model. This is because the method = "revpairwise" argument
tells the contrast function to use the difference “non-reference mean mi-
nus reference mean”, which is the direction I prefer (I like to compare to
the reference, which is usually a control)

2. The “p.value” in the output contains the p-value of the t-test. It is equal
to that in the contrast table from the linear model.

3. The t.test function doesn’t output the estimate of the difference in
means, only the estimates of each mean.

4. The t.test function does give the 95% confidence intervals of the differ-
ence in means. Notice that these have the same magnitude but opposite
sign of those in the contrast table, for the same reason given in note 1
above.

The t and p values for the t-test are the same as those for the linear model,
because the t-test is a specific case of the linear model. Reasons to abandon
classic t-tests and learn the linear modeling strategy include

1. A linear modeling strategy encourages researchers to think about the effect
and uncertainty in the effect and not just a p-value.

2. The linear model is nearly infinitely flexible and expandible while the t-test
has extremely limited flexibility.

10.1.3 Example 2 – three treatment levels (“groups”)

The data come from the experiment reported in Figure 2a of the 12,13-diHOME
article described above. This experiment was designed to probe the hypothe-
sis that 12,13-diHOME is a mediator of known stimulators of increased BAT
activity (exposure to cold temperature and sympathetic nervous system activa-
tion). Mice were assigned to control (30 °C), one-hour exposure to 4 °C, or 30
minute norepinephrine (NE) treatment level (NE is the neurotransmitter of the
sympathetic neurons targeting peripheral tissues).

response variable: diHOME, the serum concentration of 12,13-diHOME. a
continuous variable.

treatment variable: treatment, with levels: “Control”, “1 hour cold”, ”30 min
NE. Coded as a factor.

design: single, categorical X

10.1.3.1 fit the model
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fig2a_m1 <- lm(diHOME ~ treatment, data = fig2a)

10.1.3.2 check the model

set.seed(1)
qqPlot(fig2a_m1)
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The Q-Q plot indicates potential issues at the extreme quantiles, what is called
“heavy tails”. The two values are the extreme values in the “30 min NE” group.
This could be the result of a small sample from a response with a larger variance.

spreadLevelPlot(fig2a_m1, id=FALSE)
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##
## Suggested power transformation: 0.4430799

The combination of the raw residuals and the spread-level plot suggests hetero-
geneity but low confidence in anything given the small sample size.

10.1.3.3 Inference from the model

10.1.3.3.1 Coefficient table

fig2a_m1_coef <- cbind(coef(summary(fig2a_m1)),
confint(fig2a_m1))

fig2a_m1_coef

## Estimate Std. Error t value Pr(>|t|) 2.5 %
## (Intercept) 12.023075 3.081337 3.901902 0.001595771 5.414264
## treatment1 hour cold 7.140386 4.570362 1.562324 0.140527829 -2.662066
## treatment30 min NE 14.794354 4.357669 3.395015 0.004355868 5.448083
## 97.5 %
## (Intercept) 18.63189
## treatment1 hour cold 16.94284
## treatment30 min NE 24.14063
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10.1.3.3.2 Marginal means table

(fig2a_m1_emm <- emmeans(fig2a_m1, specs = "treatment"))

## treatment emmean SE df lower.CL upper.CL
## Control 12.0 3.08 14 5.41 18.6
## 1 hour cold 19.2 3.38 14 11.92 26.4
## 30 min NE 26.8 3.08 14 20.21 33.4
##
## Confidence level used: 0.95

10.1.3.3.3 Contrasts table

(fig2a_m1_pairs <- contrast(fig2a_m1_emm,
method = "revpairwise",
adjust = "none") %>%

summary(infer = TRUE))

## contrast estimate SE df lower.CL upper.CL t.ratio
## 1 hour cold - Control 7.14 4.57 14 -2.66 16.9 1.562
## 30 min NE - Control 14.79 4.36 14 5.45 24.1 3.395
## 30 min NE - 1 hour cold 7.65 4.57 14 -2.15 17.5 1.675
## p.value
## 0.1405
## 0.0044
## 0.1162
##
## Confidence level used: 0.95

10.1.3.4 plot the model

The script for plotting the model in the section Hidden code below.
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10.1.3.5 Report the model results

Compared to control mice (12.0 pmol/mL, 95% CI: 5.4, 18.6), mean serum
12,13-diHOME in mice exposed to one-hour cold (19.2 pmol/mL, 95% CI: 11.9,
26.4) was 7.1 pmol/mL higher (95% CI: -2.7, 16.9, p = 0.14) while mean Serum
12,13-diHOME in mice exposed to 30 minutes NE (26.8 pmol/mL, 95% CI: 20.2,
33.3) was 14.8 pmol/mL higher (95% CI: 5.4, 24.1 p = 0.004).

10.1.4 Understanding the analysis with three (or more)
treatment levels

10.1.4.1 The coefficient table

## Estimate Std. Error t value Pr(>|t|) 2.5 %
## (Intercept) 12.023075 3.081337 3.901902 0.001595771 5.414264
## treatment1 hour cold 7.140386 4.570362 1.562324 0.140527829 -2.662066
## treatment30 min NE 14.794354 4.357669 3.395015 0.004355868 5.448083
## 97.5 %
## (Intercept) 18.63189
## treatment1 hour cold 16.94284
## treatment30 min NE 24.14063

Two understand row names in the first column, its useful to recall the order of
the factor levels of treatment, which is
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levels(fig2a$treatment)

## [1] "Control" "1 hour cold" "30 min NE"

“Control” is the reference level, so the Estimate of the intercept is the mean
12,13diHome for the “Control” mice. The 2nd row of the coefficient table con-
tains the estimate and statistics for the “1 hour cold” level. The estimate (in
the column “Estimate”) is the difference in means ȳ1_hour_cold − ȳControl. The
3rd row contains the estimate and statistics for the “30 min NE” level. The
estimate is the difference in means ȳ30_min_NE − ȳControl.

Let’s put this in the context of the linear model fit to the data.

diHOMEi = b0 + b1treatment1_hour_cold,i + b2treatment30_min_NE,i + ei

(10.8)

The value in the column “Estimate” for the “(Intercept)” row is b0, the estimate
of β0, the “population” mean of “control” mice. The value in the column “Es-
timate” for the “treatment1 hour cold” row is b1, the estimate of β1, the effect
of the cold treatment on the response (relative to the control). The value in the
column “Estimate” for the “treatment30 min NE” row is b1, the estimate of β2,
the effect of the NE treatment on the response (relative to the control).

treatment1_hour_cold,i is a dummy-coded indicator variable, containing the
number 1, if i is in the “1 hour cold” group, or the number 0, otherwise.
treatment30_min_NE,i is a dummy-coded indicator variable, containing the
number 1, if i is in the “30 min NE” group, or the number 0, otherwise. Impor-
tantly, the function lm creates these indicator variables under the hood. You
don’t create these but understanding how these are made gives you phenome-
nal cosmic power (because there are models where you have to construct these
manually).

This generalizes to any number of levels of the factor variable. If there are
k levels of the factor, there are k − 1 indicator variables, each with its own
coefficient (b1 through bk−1) that estimates the effect of that treatment level
relative to the control (if using dummy coding).

As in the example with only two treatment levels above, both b1 and b2 are
“slopes”. Don’t visualize this as a single line from the control mean through
both non-control means but as two lines, each with their own slopes. The
numerator of each slope is the difference between that group’s mean and the
control mean. The denominator of each slope is 1 (because each has the value
1 when the row is assigned to that group).

The model formula (dihome ~ treatment) used in the lm function is the same,
regardless of the number of levels in the factor treatment. This model formula
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is the verbal form of the fit linear model and is useful for communication, but
disconnects the formula from the actual model. For example, it might lead to
the confusion on how the model dihome ~ treatment can output an intercept
and two coefficients when there is only one X variable. The answer is, this
question confuses the verbal formula with the quantitative formula. The model
is fit using the quantitative formula which has 3 − 1 = 2 indicator variables
resulting in two (non-intercept) coefficients.

10.1.4.2 The estimated marginal means table

fig2a_m1_emm

## treatment emmean SE df lower.CL upper.CL
## Control 12.0 3.08 14 5.41 18.6
## 1 hour cold 19.2 3.38 14 11.92 26.4
## 30 min NE 26.8 3.08 14 20.21 33.4
##
## Confidence level used: 0.95

This table is important for reporting means and CIs and for plotting the model.
As in example 1, the values in the column “emmean” are the simple means of
each group (what you would compute if you simply computed the mean for that
group). Again, this is true for this model, but is not generally true. Despite
the column label standing for “estimated marginal mean”, these are conditional
means – the mean conditional on treatment level.

Also as in example 1, the SE for each mean is not the sample SE but the modeled
SE – it is based on a pooled estimate of σ. These are the SEs that you should
report because it is these SEs that are used to compute the p-value and CI that
you report, that is, they tell the same “story”. The SE for the “1 hour cold”
group is a bit higher because the sample size n for this group is smaller by 1.

10.1.4.3 The contrasts table

fig2a_m1_pairs

## contrast estimate SE df lower.CL upper.CL t.ratio
## 1 hour cold - Control 7.14 4.57 14 -2.66 16.9 1.562
## 30 min NE - Control 14.79 4.36 14 5.45 24.1 3.395
## 30 min NE - 1 hour cold 7.65 4.57 14 -2.15 17.5 1.675
## p.value
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## 0.1405
## 0.0044
## 0.1162
##
## Confidence level used: 0.95

If a factor variable has more than two levels, there are multiple kinds of contrasts
that a researcher can compare. The simplest are pairwise contrasts, which are
differences between group means. These are typically called “post-hoc” tests in
hypothesis testing but I avoid that because the focus in this text is estimation.

This table is important for reporting treatment effects and CIs and for plotting
the model. As in example 1, the values in the column “estimate” are the simple
differences between the means of the groups given in the contrast column (what
you would compute if you simply computed the difference for these groups).
Again, this is true for this model, but is not generally true.

The values in the “SE” column are standard errors of a difference (SED), specif-
ically the difference in the estimate column. These SEs are from the fit model
using the pooled estimate of σ and not the SED one would compute if one sim-
ply used the two groups in the contrast column. These are the SEs that you
should report because it is these SEs that are used to compute the p-value and
CI that you report, that is, they tell the same “story”.

The values in the “lower.CL” and “upper.CL” columns are the bounds of the
95% confidence interval of the estimate. Again, this confidence level applies
to the procedure and not the estimate. Think of this interval as containing
potential values of the true parameter (the true difference in means between the
two groups) that are reasonably compatible with the data. More formally, it is
correct to interpret this CI as “95% of the CIs computed using this procedure
include the true value given the model conditions.”

The columns “t.ratio” and “p.value” contains the t and p values of the signifi-
cance (not hypothesis!) test of the estimate. The t-statistic is the ratio of the
estimate to the SE of the estimate (use the console to confirm this given the
values in the table). It is a signal (the estimate) to noise (SE of the estimate)
ratio. The p-value is the probability of sampling the same distribution, fiting
the linear model, and observing a t-value as or more extreme than the observed
t. A very small p-value is consistent with the experiment “not sampling from
distributions with the same mean” – meaning that adding a treatment affects
the mean of the distribution. This is the logic used to infer a treatment effect.
Unfortunately, it is also consistent with the experiment not approximating other
conditions of the model, including non-random assignment, non-independence,
non-normal conditional responses, and variance heterogeneity. It is up to the
rigorous researcher to be sure that these other model conditions are approxi-
mated or “good enough” to use the p-value to infer a treatment effect on the
mean.
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10.1.4.4 t and p from the contrasts table – when there are more than
two levels in X – are not the same as those from pairwise
t-tests among pairs of groups

The contrasts, CIs, and significance test statistics in the contrasts table come
from a single model fit to the data. Researchers commonly fit separate t-tests
for each pair of treatment levels instead of a single linear model.

# classic t-test
test1 <- t.test(fig2a[treatment == "1 hour cold", diHOME],

fig2a[treatment == "Control", diHOME],
var.equal=TRUE)

test2 <- t.test(fig2a[treatment == "30 min NE", diHOME],
fig2a[treatment == "Control", diHOME],
var.equal=TRUE)

test3 <- t.test(fig2a[treatment == "30 min NE", diHOME],
fig2a[treatment == "1 hour cold", diHOME],
var.equal=TRUE)

ttests <- data.frame(t = c(test1$statistic, test2$statistic, test3$statistic),
p = c(test1$p.value, test2$p.value, test3$p.value))

row.names(ttests) <- c("1 hour cold - Control",
"30 min NE - Control",
"30 min NE - 1 hour cold")

ttests

## t p
## 1 hour cold - Control 2.415122 0.038920739
## 30 min NE - Control 3.238158 0.008897132
## 30 min NE - 1 hour cold 1.380666 0.200700587

The t and p-values computed from three separate tests differ from the t and
p-values computed from the single linear model shown in the contrasts table
above. The values differ because the SE in the denominators used to compute
the t-values differ. The t-value computed from the linear model use variation
in all three groups to estimate σ2 the variance of the response conditional on
treatment level, and this estimate is commmon to all three t-tests (the SE differs
slightly because of sample size differences among levels). The t-value computed
from the separate tests each use variation from only the two groups in that test
to estimate σ2. Consequently, σ2, and the SE of the estimate, differs for each
test.

Using the linear model is a better practice than the pairwise t-tests. The reason
is that the t-tests assume homogeneity of variance, that is, the σ2 equal in all
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three groups. And, since a t-test estimates σ2, it is more precise to estimate
this using three groups (the linear model) than two groups (the pairwise t-test).
And, because the three pairwise t-test computes three estimates of σ2, it is
inconsistent to use one estimate in one test and a different estimate in a second
test (why would we think the σ2 for the Control group is two different values?).

10.1.4.5 The contrasts table – when there are more than two levels
in X – has multiple p-values. How to handle this “multiple
testing” is highly controversial

Multiple testing is the practice of adjusting p-values (and less commonly con-
fidence intervals) to account for the expected increase in the frequency of Type
I error in a batch, or family, of tests. An example of a batch of tests is the three
tests in the contrast table for the analysis of the fig2a data. Multiple testing is
a concept that exists because of Neyman-Pearson hypothesis testing strategy.
My own belief is that the major problem of multiple testing is less the inflation
of Type I error and more the idea that we “discover by p-value”. If we focus on
effects and uncertainty in experiments where we have good prior knowledge to
have reasonable expectations of these effects for the different treatment levels,
we shouldn’t be concerned about inflated Type I error. If we use experiments to
“see what happens” in tens, hundreds, thousands, or millions of response vari-
ables after we perturb the system, then multiple testing is more problematic.
Issues surrounding multiple testing are fleshed out in more detail in Chapter xxx
“Best Practices”. Computing adjusted values is covered below in the “Working
in R” section.

10.2 Working in R

10.2.1 Specifying the contrasts

10.2.2 Adjustment for multiple comparisons

If the head of your group or a reviewer demands that you adjust p-values in data
from an experiment like that for the fig2a data, then the adjust argument in
emmeans::contrast() controls the method for p-value adjustment. The default
is “tukey”.

1. “none” – no adjustment, in general my preference.
2. “tukey” – Tukey’s HSD
3. “bonferroni” – the standard bonferroni, which is conservative
4. “fdr” – the false discovery rate
5. “mvt” – based on the multivariate t distribution and using covariance

structure of the variables
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Here I use the Tukey HSD adjustment, which is a common choice for the
“posthoc comparison of means” in experimental data like this. The Tukey ad-
justment is the default of emmeans::contrast() if the method of comparison
is revpairwise, which means that the adjust argument does not need to be
specified. That said, explicitly specify the adjustment as this makes the analysis
more transparent.

(fig2a_m1_pairs_tukey <- contrast(fig2a_m1_emm,
method = "revpairwise",
adjust = "tukey") %>%

summary(infer = TRUE))

## contrast estimate SE df lower.CL upper.CL t.ratio
## 1 hour cold - Control 7.14 4.57 14 -4.82 19.1 1.562
## 30 min NE - Control 14.79 4.36 14 3.39 26.2 3.395
## 30 min NE - 1 hour cold 7.65 4.57 14 -4.31 19.6 1.675
## p.value
## 0.2936
## 0.0114
## 0.2490
##
## Confidence level used: 0.95
## Conf-level adjustment: tukey method for comparing a family of 3 estimates
## P value adjustment: tukey method for comparing a family of 3 estimates

10.2.3 Plotting models with a single, categorical X

10.2.3.1 Response plot – Sample means and error bars using ggpubr

The package ggpubr makes it very easy to create a publishable plot.

gg_good <- ggstripchart(data = fig2a,
x = "treatment",
y = "diHOME",
add = "mean_se"

)
gg_good
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With a little work, we can improve this. Note that I’ve changed the error interval
from 1 SE to a 95% CI.

compare_list <- list(c("Control", "1 hour cold"), c("Control", "30 min NE"))

gg_better <- ggstripchart(data = fig2a,
x = "treatment",
y = "diHOME",
add = "mean_ci",
color = "treatment",
palette = "jco"

) +
stat_compare_means(method = "t.test",

comparisons=compare_list)

gg_better
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10.2.3.2 Response plot – Modeled CIs and custom p-values using
ggpubr

The CI’s and p-values computed using ggpubr are sample statistics and mul-
tiple, independent Welch t-tests and not from the linear model lm(fig2a ~
treatment). Since the p-values are from Welch t-tests, the CIs and p-values
are consistent in that they are using the same models to compute them.
ggpubr and stat_compare_means() have very limited flexibility in the means,
CI’s and p values that can be reported in a plot. This raises issues with
best practices in this text, which advocates reporting modeled means, CIs
and p-values. This includes adjusted p-values, which are not handled by
stat_compare_means(). ggpubr has the function stat_pvalue_manual(),
which is useful for reporting p-values from tests other than the limited number
of tests available in stat_compare_means(). For the model used with fig2a,
we can use ggpub to construct the base plot of means and raw values. But
with more complex models, we have to skip ggpubr alltogether and use ggplot2
directly.
Step 1 – convert the “emm” (estimated marginal means) and “pairs” (contrast)
tables to data.table. The “emm” table is ready after conversion to a data.table
but the “pairs” table needs additional columns

1. create a column of pretty p-values that are rounded or converted to “<
0.001” if small.

2. create the group columns containing the pair of groups that are compared.
adding p-values to the graph requires a bracket to show which groups are
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being compared. The column “group1” is added to list the “x value” of
the first group. The column “group2” is added to list the “x value” of the
second group. The “x value” of a group is the index of the group returned
by the levels() function.

levels(fig2a$treatment)

## [1] "Control" "1 hour cold" "30 min NE"

As an example, the contrast in the first row of the contrast table is “1 hour cold
- Control”. This is 2 - 1. The first element of Group1 is “2” and the first element
of Group2 is “1”. ggpubr will use these columns to construct the brackets.

fig2a_m1_emm_dt <- summary(fig2a_m1_emm) %>%
data.table

fig2a_m1_pairs_dt <- data.table(fig2a_m1_pairs)

# pvalString is from package lazyWeave
fig2a_m1_pairs_dt[ , p_pretty := pvalString(p.value)]
# also create a column with "p-val: "
fig2a_m1_pairs_dt[ , pval_pretty := paste("p-val:", p_pretty)]

# create group columns -- this is needed for p-value brackets
fig2a_m1_pairs_dt[, group1 := c(2, 3, 3)]
fig2a_m1_pairs_dt[, group2 := c(1, 1, 2)]

Step 2 – Add the CIs and p-value to a ggpubr plot

gg_almost_best <- ggstripchart(data = fig2a,
x = "treatment",
y = "diHOME",
add = "mean",
color = "treatment",
palette = "jco"

) +

geom_errorbar(data = fig2a_m1_emm_dt,
aes(y = emmean,

ymin = lower.CL,
ymax = upper.CL,
color = treatment),

width = 0) +

# only plotting 1st two p-values
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stat_pvalue_manual(fig2a_m1_pairs_dt,
label = "p_pretty",
y.position = c(46, 54, 50)) +

NULL # add to ease exploring plot components

gg_almost_best
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Notes

1. The y.position argument in stat_pvalue_manual() contains the posi-
tion on the y-axis for the p-value brackets. I typically choose these values
“by eye”. Essentially, I look at the maximum y-value on the plot and then
choose a value just above this for the first bracket.

2. All three p-values are shown. In general, all p-values (and means and CIs)
should be reported but these can be in a supplemental table. To limit the
p-values that are shown, use the row index of a data.table. For example, to
show on the p-values with the control, use the following script (note that
y.position was also changed to only show the y position of two brackets).

stat_pvalue_manual(fig2a_m1_pairs_dt[1:2,],
label = "p_pretty",
y.position = c(46, 50))

## mapping: xmin = ~xmin, xmax = ~xmax, label = ~label, y.position = ~y.position, vjust = ~vjust, group = 1:2, step.increase = c(0, 0), bracket.nudge.y = c(0, 0), bracket.shorten = c(0, 0), x = ~xmin, y = ~y.position
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## geom_bracket: type = text, na.rm = FALSE, coord.flip = FALSE
## stat_bracket: tip.length = 0.03, na.rm = FALSE
## position_identity

10.2.3.3 Response plot – Modeled means and CIs using ggplot2

The only difference between this and the “gg_almost_best” plot constructed
above is that I am using the ggplot function to create the base plot (the axes)
and geom_sina to plot the points in place of ggstripchart from the ggpubr
package.

Step 1 - Create the data tables “fig2a_m1_emm_dt” and “fig2a_m1_pairs_dt”
as above.

Step 2 - plot using the color-blind friendly Okabe-Ito paletter instead of “jco”.

gg_response <- ggplot(data = fig2a,
aes(x = treatment,

y = diHOME,
color = treatment)) +

# points
geom_sina(alpha = 0.5) + # ggforce package

# plot means and CI
geom_errorbar(data = fig2a_m1_emm_dt,

aes(y = emmean,
ymin = lower.CL,
ymax = upper.CL,
color = treatment),

width = 0
) +

geom_point(data = fig2a_m1_emm_dt,
aes(y = emmean,

color = treatment),
size = 3

) +

# aesthetics
ylab("12,13-diHOME (pmol/mL)") +
scale_color_manual(values=pal_okabe_ito,

name = NULL) +
theme_pubr() +
theme(legend.position="none") +
theme(axis.title.x=element_blank()) +
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NULL

# create a version with the p-values. We want the p-valueless version for the combined effects-response plot

gg_response_p <- gg_response +
# only plotting 1st two p-values

stat_pvalue_manual(fig2a_m1_pairs_dt,
label = "p_pretty",
y.position = c(46, 54, 50))

gg_response_p
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10.2.3.4 Effects plot

Effects plots commonly use the y-axis for the categorical variable (the contrast
pairs) and the x-axis for the continuous variable (the effects). It is important
to make sure the order of the plotted contrasts and p-values match!

# important -- this insures the order of the contrasts in the plot i
# the order in the pairs table.
contrast_order <- fig2a_m1_pairs_dt[, contrast]
fig2a_m1_pairs_dt[, contrast := factor(contrast, contrast_order)]
# labels for plotting contrasts - double check the order
fig2a_m1_pairs_dt[, contrast_label := c("cold effect",
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"NE effect",
"NE minus cold")]

gg_effect <- ggplot(data=fig2a_m1_pairs_dt,
aes(x = estimate,

y = contrast)) +
# confidence level of effect
geom_errorbar(aes(xmin=lower.CL,

xmax=upper.CL),
width=0,
color="black") +

# estimate of effect
geom_point(size = 3) +

# draw a line at effect = 0
geom_vline(xintercept=0, linetype = 2) +

# p-value. The y coordinates are set by eye
annotate(geom = "text",

label = fig2a_m1_pairs_dt$p_pretty,
y = 1:3,
x = 28) +

annotate(geom = "text",
label = "p-value",
y = 3.25,
x = 28) +

# # contrast labels
scale_y_discrete(labels = fig2a_m1_pairs_dt$contrast_label) +

# x-axis label and aesthetics
xlab("Effects (pmol/mL)") +
ylab("Contrast") +
coord_cartesian(xlim = c(-10,30)) +

# use ggpubr theme
theme_pubr() +

NULL

gg_effect
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10.2.3.5 Combined effects-response plot

plot_grid from the cowplot package is used to create a combined effects-
response plot by combining the gg_effect and gg_response plots. This looks
best if the labels of the x-axis are set to “top” instead of “bottom”. Also we
don’t need p-values on both components. The placement of “p-value” in the
gg_effect plot above does not look good in the combined plot and I cannot
remove this (easily) so I’m rebuilding the gg_effect component from scratch.

# important -- this insures the order of the contrasts in the plot i
# the order in the pairs table.
contrast_order <- fig2a_m1_pairs_dt[, contrast]
fig2a_m1_pairs_dt[, contrast := factor(contrast, contrast_order)]
# labels for plotting contrasts - double check the order
fig2a_m1_pairs_dt[, contrast_label := c("cold effect",

"NE effect",
"NE minus cold")]

gg_effect <- ggplot(data=fig2a_m1_pairs_dt,
aes(x = estimate,

y = contrast)) +
# confidence level of effect
geom_errorbar(aes(xmin=lower.CL,

xmax=upper.CL),
width=0,
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color="black") +
# estimate of effect
geom_point(size = 3) +

# draw a line at effect = 0
geom_vline(xintercept=0, linetype = 2) +

# p-value. The y coordinates are set by eye
annotate(geom = "text",

label = fig2a_m1_pairs_dt$p_pretty,
y = 1:3,
x = 28) +

scale_y_discrete(labels = fig2a_m1_pairs_dt$contrast_label) +

# x-axis label and aesthetics
xlab("Effects (pmol/mL)") +
ylab("Contrast") +
coord_cartesian(xlim = c(-10,30)) +

# the new code
scale_x_continuous(breaks = c(-10, 0, 10, 20, 28),

labels = c("-10", "0", "10", "20", "p-value"),
position = "top") + # move to top

# use ggpubr theme
theme_pubr() +

NULL

plot_grid(gg_effect,
gg_response,
nrow=2,
align = "v",
axis = "lr",
rel_heights = c(0.5,1))
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10.3 Issues in inference in models with a single,
categorical X

10.3.1 Lack of independence

The data from the experiment for Figure 1b of the 12,13-diHOME article out-
lined above are the plasma concentrations of 12,13-diHOME in humans in
response to either saline or one-hour cold challenge. The response variable
(diHOME) is not independent because

# fit the model
m1 <- lmer(diHOME ~ treatment + (1|id), data = fig1b)

# estimated marginal means table
m1_emm <- emmeans(m1, specs = "treatment")

# contrasts table
(m1_pairs <- contrast(m1_emm,

method = "revpairwise") %>%
summary(infer = TRUE))

## contrast estimate SE df lower.CL upper.CL t.ratio p.value
## cold - saline 0.234 0.0549 8 0.108 0.361 4.272 0.0027
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##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95

t.test(x = fig1b[treatment == "cold", diHOME],
y = fig1b[treatment == "saline", diHOME],
paired = TRUE)

##
## Paired t-test
##
## data: fig1b[treatment == "cold", diHOME] and fig1b[treatment == "saline", diHOME]
## t = 4.2722, df = 8, p-value = 0.002716
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.1078778 0.3609173
## sample estimates:
## mean of the differences
## 0.2343975

10.3.2 Heterogeneity of variances

Textbooks that use a “which test?” strategy often point to a Welch’s t-test in
place of Student’s t-test if there is heterogeneity of variances between treatment
groups. A Welch t-test is infrequent in the experimental biology literature,
perhaps because

1. it is poorly known and it doesn’t occur to researchers to use a test that
models heterogeneity of variances.

2. many experiments have more than two levels, or are factorial, and these
are often analyzed with ANOVA instead of multiple t-tests.

3. heterogeneity often arises in right-skewed data, which is often analyzed
with a non-parametric test like the Mann-Whitney U test.

The Welch t-test is a special case of a linear model that explicitly models the
within-group variance using generalized least squares (GLS). The 95% CI of
a mean differences and p-values from the fit gls linear model and from Welch’s
t-test are the same. Advantages of using a linear modeling strategy is that a
researcher uses the model to estimate effects (difference in means) and measures
of uncertainty in the effects (standard errors or confidence intervals of the dif-
ference). Advantages of specifically using the gls extension of the linear model
is that it is it can be easily expanded to analyze more complex designs including
1) more than two treatment groups, 2) more than one factor, and 3) additional
covariates.
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Modeling variance heterogenity is the focus of chapter xxx so the account here
is brief. Heterogeneity can be modeled using a generalized least squares linear
model with the gls function. The weights argument is used to model the
variances using each group’s sample variance. In this example, I use the data
from the Figure 1b experiment, which can be compared to the analysis of the
same data in Example 2 above.

subdata <- fig2a[is.na(diHOME) == FALSE,] # omit rows with missing data
fig2a_m2 <- gls(diHOME ~ treatment,

data = subdata,
weights = varIdent(form = ~ 1 | treatment))

The model fig2a_m2 uses variance computed in each group separately as the
estimate of σ2 for that group. The coefficient table of the GLS model is

summary(fig2a_m2) %>%
coef()

## Value Std.Error t-value p-value
## (Intercept) 12.023075 1.200139 10.018072 9.134757e-08
## treatment1 hour cold 7.140386 3.163467 2.257139 4.050473e-02
## treatment30 min NE 14.794354 4.568757 3.238157 5.951274e-03

Notes

1. Important for reporting p-values. Unlike the linear model mod-
eling homogenous variance, the p-values for the coefficients of
treatment1 hour cold and treatment30 min NE are not the same
as the p-values of these equivalent contrasts in the contrasts table (see
below). The reason is, the computation of the p-value in the two tables
use two different degrees of freedom. Report the p-values from the
contrast table using the Satterthwaite df.

The modeled means and contrasts are computed as above for the lm object

fig2a_m2_emm <- emmeans(fig2a_m2, specs="treatment")
fig2a_m2_emm

## treatment emmean SE df lower.CL upper.CL
## Control 12.0 1.20 5 8.94 15.1
## 1 hour cold 19.2 2.93 4 11.04 27.3
## 30 min NE 26.8 4.41 5 15.49 38.1
##
## Degrees-of-freedom method: satterthwaite
## Confidence level used: 0.95
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Notes

1. The SE of the means in this table are modeled SEs but are equal to the
sample SE of the means, because this was specified in the GLS model.

fig2a_m2_pairs <- contrast(fig2a_m2_emm,
method = "revpairwise",
adjust = "none") %>%

summary(infer = TRUE)
fig2a_m2_pairs

## contrast estimate SE df lower.CL upper.CL t.ratio
## 1 hour cold - Control 7.14 3.16 5.34 -0.839 15.1 2.257
## 30 min NE - Control 14.79 4.57 5.74 3.490 26.1 3.238
## 30 min NE - 1 hour cold 7.65 5.29 8.35 -4.460 19.8 1.446
## p.value
## 0.0703
## 0.0189
## 0.1845
##
## Degrees-of-freedom method: satterthwaite
## Confidence level used: 0.95

Compare this table to the three Welch t-tests of all pairs of treatment levels in
the fig2a experiment.

test1 <- t.test(fig2a[treatment == "1 hour cold", diHOME],
fig2a[treatment == "Control", diHOME],
var.equal=FALSE)

test2 <- t.test(fig2a[treatment == "30 min NE", diHOME],
fig2a[treatment == "Control", diHOME],
var.equal=FALSE)

test3 <- t.test(fig2a[treatment == "30 min NE", diHOME],
fig2a[treatment == "1 hour cold", diHOME],
var.equal=FALSE)

welch_tests <- data.frame(t = c(test1$statistic, test2$statistic, test3$statistic),
p = c(test1$p.value, test2$p.value, test3$p.value))

row.names(welch_tests) <- c("1 hour cold - Control",
"30 min NE - Control",
"30 min NE - 1 hour cold")

welch_tests
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## t p
## 1 hour cold - Control 2.257139 0.07026220
## 30 min NE - Control 3.238158 0.01889041
## 30 min NE - 1 hour cold 1.446454 0.18451549

The t and p-values computed from the GLS linear model and from the three,
pairwise Welch t-tests are the same (to about the 6th decimal place). They are
the same because each is estimating σ2 separately for each group and not as
the pooled (among two groups for t-test or three groups for the linear model)
estimate and because they use the same degrees of freedom to compute the
p-value.

Let’s summarize these comparisons

1. Inference from a linear model using homogenous variance (the lm function)
and from a Student’s t-test are the same if there are only two levels in the
treatment variable.

2. Inference from a linear model using homogenous variance (the lm function)
and from the series of pairwise, Student’s t-tests differ when there are more
than two levels in the treatment variable.

3. Inference from a GLS linear model using heterogenous variance (the gls
function) and from a Welch t-test are the same regardless of the number
of levels in the treatment variable.

Even though the linear model that models heterogeneity and the Welch t-test
produce the same results, researchers should use the linear model because

1. A linear modeling strategy encourages researchers to think about the effect
and uncertainty in the effect and not just a p-value.

2. The linear model is nearly infinitely flexible and expandible while the t-test
has extremely limited flexibility (The Welch t-test is one way to expand
the classical, Student’s t-test).



10.4. HIDDEN CODE 303

10.3.3 The conditional response isn’t Normal

10.3.4 Pre-post designs

10.3.5 Longitudinal designs

10.3.6 Comparing responses normalized to a standard

10.3.7 Comparing responses that are ratios

10.3.8 Researcher degrees of freedom

Conspicuously, the p-value for the “1 hour cold - Control” contrast is 0.039,
which is “significant” using the conventional

10.4 Hidden Code

10.4.1 fig2a data

The script for plotting the model in the section Hidden code below.

fig2a_m1_emm_dt <- summary(fig2a_m1_emm) %>%
data.table

fig2a_m1_pairs_dt <- data.table(fig2a_m1_pairs)
fig2a_m1_pairs_dt[ , p_pretty := pvalString(p.value)]

fig2a_gg_response <- ggplot(data = fig2a,
aes(x = treatment,

y = diHOME,
color = treatment)) +

# points
geom_sina(alpha = 0.5) +

# plot means and CI
geom_errorbar(data = fig2a_m1_emm_dt,

aes(y = emmean,
ymin = lower.CL,
ymax = upper.CL,
color = treatment),

width = 0
) +
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geom_point(data = fig2a_m1_emm_dt,
aes(y = emmean,

color = treatment),
size = 3

) +

# aesthetics
ylab("12,13-diHOME (pmol/mL)") +
scale_color_manual(values=pal_okabe_ito,

name = NULL) +
theme_pubr() +
theme(legend.position="none") +
theme(axis.title.x=element_blank()) +

NULL

#fig2a_gg_response

# reverse order of rows so flipped plot has original order
fig2a_m1_pairs_dt <- fig2a_m1_pairs_dt[rev(1:.N)]

# order "contrast" factor as in table!
contrast_order <- fig2a_m1_pairs_dt[, contrast]
fig2a_m1_pairs_dt[, contrast := factor(contrast, contrast_order)]

min_bound <- min(fig2a_m1_pairs_dt[, lower.CL])
max_bound <- min(fig2a_m1_pairs_dt[, upper.CL])
y_lo <- min(min_bound+min_bound*0.2,

-max_bound)
y_hi <- max(max_bound + max_bound*0.2,

-min_bound)
y_lims <- c(y_lo, y_hi)

fig2a_gg_effect <- ggplot(data=fig2a_m1_pairs_dt,
aes(x = contrast,

y = estimate)) +
# confidence level of effect
geom_errorbar(aes(ymin=lower.CL,

ymax=upper.CL),
width=0,
color="black") +

# estimate of effect
geom_point(size = 3) +
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# zero effect
geom_hline(yintercept=0, linetype = 2) +

# p-value
annotate(geom = "text",

label = fig2a_m1_pairs_dt$p_pretty,
x = 1:3,
y = -10) +

# aesthetics
scale_y_continuous(position="right") +
scale_x_discrete(labels = c("NE minus cold",

"NE effect",
"cold effect"

)) +
coord_flip(ylim = y_lims) +
theme_pubr() +
ylab("Effects (pmol/mL)") +
theme(axis.title.y = element_blank()) +
NULL

# fig2a_gg_effect

fig2a_fig <- plot_grid(fig2a_gg_effect,
fig2a_gg_response,
nrow=2,
align = "v",
axis = "lr",
rel_heights = c(0.5,1))

fig2a_fig
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Chapter 11

Model Checking

11.1 All statistical analyses should be followed
by model checking

We us a linear model to infer effects or predict future outcomes. Our inference
is uncertain. Given the model assumptions, we can quantify this uncertainty
with standard errors, and from these standard errors we can compute confidence
intervals and p-values. It is good practice to use a series of diagnostic plots,
diagnostic statistics, and simulation to check how well the data approximate the
fit model and model assumptions. Model checking is used to both check our
subjective confidence in the modeled estimates and uncertainty and to provide
empirical evidence for subjective decision making in the analysis workflow.

NHST blues – Researchers are often encouraged by textbooks, colleagues, or
the literature to test the assumptions of a t-test or ANOVA with formal hypoth-
esis tests of distributions such as a Shaprio-Wilks test of normality or a Levine
test of homogeneity. In this strategy, an alternative to the t-test/ANOVA is
used if the distribution test’s p-value is less than some cut-off (such as 0.05).
Common alternatives include 1) transformations of the response to either make
it more normal or the variances more homogenous, 2) implementation of alter-
native tests such as a Mann-Whitney-Wilcoxon (MWW) test for non-normal
data or a Welch t-test/ANOVA for heterogenous variances. The logic of a test
of normality or homogeneity before a t-test/ANOVA isn’t consistent with fre-
quentist thinking because the failure to reject a null hypothesis does not mean
the null hypothesis is true. We shouldn’t conclude that a sample is “normal”
or that the variances are “homogenous” because a distributional test’s p-value
> 0.05. But, maybe we should of the distributional pre-test as an “objective”
model check? The logic of this objective decision rule suffers from several issues.
First, the subsequent p-value of the ttest/ANOVA test is not valid because this
p-value is the long-run frequency of a test-statistic as large or larger than the

307
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observed statistic conditional on the null – not conditional on the subset of nulls
with p > 0.05 in the distribution test. Second, real data are only approximately
normal; with small n, it will be hard to reject the null of a normal distribution
because of low power, but, as n increses, a normality test will reject any real
dataset. Third, and most importantly, our analysis should follow the logic of
our goals. If our goal is the estimation of effects, we cannot get meaningful
estimates from a non-parametric test (with a few exceptions) or a transformed
response, as these methods are entirely about computing a “correct” p-value.
Good alternatives to classic non-parametric tests and transformations are boot-
strap estimates of confidence limits, permutation tests, and generalized linear
models.

11.2 Linear model assumptions

To faciliate explanation of assumptions of the linear model and extensions of the
linear model, I will use both the error-draw and conditional-draw specifications
of a linear model with a single X variable.

error draw:

y = β0 + β1xi + εi (11.1)
εi ∼ N(0, σ2) (11.2)

conditional draw:

yi ∼ N(µi, σ2) (11.3)
E(Y |X = xi) = µi (11.4)

µi = β0 + β1xi (11.5)

This model generates random data using the set of rules specified in the model
equations. To quantify uncertainty in our estimated parameters, including stan-
dard errors, confidence intervals, and p-values, we make the assumption that the
data from the experiment is a random sample generated using these rules.

The two rules specified in the model above (Model (??)) are

1. The systematic component of data generation is β0 + β1X.

• More generally, all linear models in this text specify systematic compo-
nents that are linear in the parameters. Perhaps a better name for this
is “additive in the parameters”. Additive (or linear) simply means that
we can add up the products of a parameter and an X variable to get the
conditional expectation E(Y |X).
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• For observational inference, the rule E(Y |see X = xi) = µi is sufficient.
For causal inference with data from an experiment, or with observational
data and a well defined causal diagram, we would need to modify this to
E(Y |do X = xi) = µi.

2. The stochastic component of data generation is “IID Normal”, where IID
is independent and identically distributed and Normal refers to the
Normal (or Gaussian) distribution. The IID assumption is common to all
linear models. Again, for the purpose of this text, I define a “linear model”
very broadly as a model that is linear in the parameters. This includes
many extensions of the classical linear model including generalized least
squares linear models, linear mixed models, generalized additive models,
and generalized linear models. Parametric inference form all linear mod-
els requires the specification of a distribution family to sample. Families
that we will use in this book include Normal, gamma, binomial, pois-
son, and negative binomial. This text will also cover distribution free
methods of quantifying uncertainty using the bootstrap and permutation,
which do not specify a sampling distribution family.

11.2.1 A bit about IID

1. Independent means that the random draw for one case cannot be pre-
dicted from the random draw of any other case. A lack of independence
creates correlated error. There are lots or reasons that errors might be
correlated. If individuals are measured both within and among cages, or
tanks, or plots, or field sites, then we’d expect the measures within the
same unit (cage, tank, plot, site) to err from the model in the same direc-
tion because of environmental features shared by individuals within the
unit but not by individuals in other units. Multiple measures within exper-
imental units create “clusters” of error. Lack of independence or clustered
error can be modeled using generalized least squares (GLS) models
that directly model the structure of the error and with random effects
models. Random effects models go by many names including linear mixed
models (common in Ecology), hierarchical models, and multilevel models.
Both GLS and random effects models are variations of linear models.

tl;dr – Measures taken within the same individual over time (repeated measures)
are correlated and are common in all areas of biology. In ecology and evolu-
tionary studies, measures that are taken from sites that are closer together or
measures taken closer in time or measures from more closely related biological
species will tend to have more similar error than measures taken from sites that
are further apart or from times that are further apart or from species that are
less closely related. Space and time and phylogeny create spatial, temporal,
and phylogenetic autocorrelation.
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2. Identical means that all random draws at a given value of X are from
the same distribution. Using the error-draw specification of the model
above, this can be restated as, the error-draw (εi) for every i is from the
same distribution N(0, σ2). Using the conditional-draw specification, this
can be restated as, the random-draw yi for every i with the same ex-
pected value µ = µi is from the same distribution N(µi, σ2). Understand
the importance of this. Parametric inference using this model assumes
that the sampling variance of µ at a single value of X is the same for
all values of X. If X is continuous, this means the spread of the points
around the regression line is the same at all values of X in the data. If
X is categorical, this means the spread of the points around the mean of
a group is the same for all groups. A consequence of “identical”, then,
for all classical linear models, is the assumption of homogeneity (or ho-
moskedasticity) of variance. If the sampling variance differs among the
X, then the variances are heterogenous or heteroskedastic. Experimen-
tal treatments can affect the variance of the response in addition to the
mean of the response. Heterogenous variance can be modeled using Gen-
eralized Least Squares (GLS) linear models. Many natural biological
processes generate data in which the error is a function of the mean. For
example, measures of biological variables that grow, such as size of body
parts, have variances that “grow” with the mean. Or, measures of counts,
such as the number of cells damaged by toxin, the number of eggs in a
nest, or the number of mRNA transcripts per cell have variances that are a
function of the mean. Both growth and count measures can sometimes be
reasonably modeled using a linear model but more often, they are better
modeled using a Generalized Linear Model (GLM).

11.3 Diagnostic plots use the residuals from the
model fit

11.3.1 Residuals

A residual of a statistical model is yi − ŷi. Remember that ŷi is the predicted
value of Y when X has the value xi (compactly written as X = xi). And
remember that ŷi is the estimate of µi. For linear models (but not generalized
linear models), the residuals of the fit model are estimates of the ε in equation
(11.2). This is not true for generalized linear models because GLMs are not
specified using (11.2).

Alert A common misconception is that inference from a linear model assumes
that the response (the measured Y ) is IID Normal. This is wrong. Either speci-
fication of the linear model shows precisely why this conception is wrong. Model
(11.2) explicitly shows that it is the error that has the normal distribution – the
distribution of Y is a mix of the distribution of X and that of the error. A more
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Figure 11.1: (#fig:model-check-histogram, model-check-residuals1)Histogram of
the (A) response, showing with modes near the true means of each group and
(B) residuals, with a mode for both groups at zero.

general way of thinking about the assumed distribution uses the specification in
model (11.5), which shows that it is the conditional response that is assumed to
be IID normal. Remember, a conditional response (yi) is a random draw from
the infinite set of responses at a given value of X.

Let’s look at the distribution of residuals versus the distribution of responses for
a hypothetical experiment with a single, categorical X variable (the experimen-
tal factor) with two levels (“Cn” for control and “Tr” for treatment). The true
parameters are β0 = 10 (the true mean for the control group, or µ0), β1 = 4
(the difference between the true mean for the treatment minus the true mean
for the control, or µ1 − µ0), and σ = 2 (the error standard deviation).

The plot above shows a histogram of the response (A) and residuals (B). In
the plot of the response, the mode (the highest bar, or bin with the most cases)
includes true mean for each group. And, as expected given β1 = 4, the modes of
the two groups are 4 units apart. It should be easy to see from this plot that the
response does not have a normal distribution. Instead, it is distincly bimodal.
But the distribution of the response within each level looks like these are drawn
from a normal distribution – and it should. In the plot of the residuals, the
values of both groups are shifted so that the mean of each group is at zero. The
consequence of the shift is that the combined set of residuals does look like it is
drawn from a Normal distribution.
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The two plots suggest two different approaches for model checking. First, we
could examine the responses within each level of the experimental factor. Or,
second, we could examine the residuals of the fit model, ignoring that the resid-
uals come from multiple groups. The first is inefficient because it requires as
many checks as there are levels in the factor. The second requires a single check.

Alert Some textbooks that recommend formal hypothesis tests of normality
recommend the inefficient, multiple testing on each group separately. This isn’t
wrong, it’s just more work than it needs to be and also suffers from “multiple
testing”.

11.3.2 A Normal Q-Q plot is used to check for character-
istic departures from Normality

A Normal Q-Q plot is a scatterplot of

1. sample quantiles on the y axis. The sample quantiles is the vector of
N residuals in rank order, from smallest (most negative) to largest (most
positive). Sometimes this vector is standardized by dividing the residual
by the standard deviation of the residuals (doing this makes no difference
to the interpretation of the Q-Q plot).

2. standard normal quantiles on the x axis. This is the vector of standard,
Normal quantiles given N elements in the vector. “Standard Normal”
means a normal distribution with mean zero and standard deviation (σ)
one. A Normal quantile is the expected deviation given a probability.
For example, if the probability is 0.025, the Normal quantile is -1.959964.
Check your understanding: 2.5% of the values in a Normal distribution
with mean 0 and standard deviation one are more negative than -1.959964.
The Normal quantiles of a Normal Q-Q plot are computed for the set of
N values that evenly split the probability span from 0 to 1. For N = 20,
this would be

p <- data.frame(quantile = qnorm(ppoints(1:20)))
row.names(p) <- ppoints(1:20)
p

## quantile
## 0.025 -1.95996398
## 0.075 -1.43953147
## 0.125 -1.15034938
## 0.175 -0.93458929
## 0.225 -0.75541503
## 0.275 -0.59776013
## 0.325 -0.45376219
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## 0.375 -0.31863936
## 0.425 -0.18911843
## 0.475 -0.06270678
## 0.525 0.06270678
## 0.575 0.18911843
## 0.625 0.31863936
## 0.675 0.45376219
## 0.725 0.59776013
## 0.775 0.75541503
## 0.825 0.93458929
## 0.875 1.15034938
## 0.925 1.43953147
## 0.975 1.95996398

A Normal Q-Q plot is not a test if the data are Normal. Instead, a Normal
Q-Q plot is used to check for characteristic departures from Normality that are
signatures of certain well-known distribution families. A researcher can look at
a QQ-plot and reason that a departure is small and choose to fit a classic linear
model using the Normal distribution. Or, a researcher can look at a QQ-plot
and reason that the departure is large enough to fit a generalized linear model
with a specific distribution family.

Stats 101 A quantile is the value of a distribution that is greater than p percent
of the values in the distribution. The 2.5% quantile of a uniform distribution
from 0 to 1 is 0.025. The 2.5% quantile of a standard normal distribution is
-1.96 (remember that 95% of the values in a standard normal distribution are
between -1.96 and 1.96). The 50% quantile of a uniform distribution is 0.5 and
the 50% quantile of a standard normal distribution is 0.0 (this is the median of
the distribtion – 50% of the values are smaller and 50% of the values are larger).

Stats 201 A Q-Q plot more generally is a scatter plot of two vectors of quantiles
either of which can come from a sample or a theoretical distribution. In the GLM
chapter, the text will introduce Q-Q plots of residual quantiles transformed to
have an expected uniform distribution. These are plotted against theoretical
uniform quantiles from 0 to 1.
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11.3.2.1 Normal QQ-plot of the fake data generated above
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If the sampled distribution approximates a sample from a normal distribution,
the scatter should fall along a line from the bottom, left to the top, right of
the plot. The interpretation of a normal Q-Q plot is enhanced with a line of
“expected values” of the sample quantiles if the sample residuals are drawn from
a normal distribution. The closer the sample quantiles are to the line, the more
closely the residuals approximate the expectation from a normal distribution.
Because of sampling, the sampled values always deviate from the line, especially
at the ends. The shaded gray area in the Q-Q plot in Figure ?? are the 95%
confidence bands of the quantiles. A pattern of observed quantiles with some
individual points outside of these boundaries indicates a sample that would be
unusual if sampled from a Normal distribution.

Biological datasets frequently have departures on a Normal Q-Q plot that are
characteristic of specific distribution families, including lognormal, binomial,
poisson, negative binomial, gamma, and beta. It is useful to learn how to read
a Normal Q-Q plot to help guide how to model your data.

What about the intepretation of the Q-Q plot in Figure ??? At the small end of
the distribution (bottom-left), the sample values are a bit more negative than
expected, which means the left tail is a bit extended. At the large end (upper-
right), the sample values are, a bit less positive than expected, which means
the right tail is a bit shortened. This is a departure in the direction of a left
skewed distribution. Should we fit a different model given these deviations? To
guide us, we compare the quantiles to the 95% confidence band of the quantiles.
Clearly the observed quantiles are within the range of quantiles that we’d expect
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if sampling from a Normal distribution.

11.3.3 Mapping QQ-plot departures from Normality

Let’s look at simulated samples drawn from non-normal distributions to identify
their characteristic deviations. Each set of plots below shows

1. (left panel) A histogram of 10,000 random draws from the non-Normal
distribution (blue). This histogram is superimposed over that of 10,000
random draws from a Normal distribution (orange) with the same mean
and variance as that of the non-normal distribution.

2. (middle panel) Box plots and strip chart of a random subset (N = 1000)
of data in the left panel.

3. (right panel) Normal Q-Q plot of the non_Normal data only.
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The Normal Q-Q plot of a sample from a right-skewed distribution is character-
ized by sample quantiles at the high (right) end being more positive than the
expected Normal quantiles. Often, the quantiles at the low (left) end are also
less negative than the expected normal quantiles. The consequence is a concave
up pattern.
The histograms in the left panel explain this pattern. The right tail of the
skewed-right distribution extends further than the right tail of the Normal. It
is easy to see from this that, if we rank the values of each distribution from
small to large (these are the quantiles), the upper quantiles of the skewed-right
distribution will be larger than the matching quantile of the Normal distribution.
For example, the 99,990th quantile for the skewed-right distribution will be
much more positive than the 99,990th quantile for the Normal distribution. The
opposite occurs at the left tail, which extends further in the negative direction
in the Normal than the skewed-right distribution.
The middle panel compares a boxplot and stripchart of samples from the two
distributions to show what researchers should look for in their own publication-
ready plots as well as the published plots of colleagues. The skewed-right plot
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exhibits several hallmarks of a skewed-right distribution including 1) a median
line (the horizontal line within the box) that is closer to the 25th percentile
line (the lower end of the box) than to the 75th percentile line (the upper end
of the box), 2) a longer upper than lower whisker (the vertical lines extending
out of the box), 3) more outliers above the upper whisker than below the lower
whisker, and 4) a lengthened, upward smear of the scatter of points at the high
end of the values, relative to the more compact smear at the low end of the
values.

Skewed-Left Q-Q
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Left skew

The Normal Q-Q plot of a sample from a left-skewed distribution is characterized
by sample quantiles at the low (left) end being more negative than the expected
Normal quantiles. Often, the quantiles at the high (right) end are also less
positive than the expected normal quantiles. The consequence is a concave
down pattern.

The histograms in the left panel explain this pattern. The left tail of the skewed-
left distribution extends further than the left tail of the Normal. It is easy to
see from this that, if we rank the values of each distribution from small to large
(these are the quantiles), the lower quantiles of the skewed-left distribution will
be more negative than the matching quantile of the Normal distribution. For
example, the 10th quantile for the skewed-left distribution will be much more
negative than the 10th quantile for the Normal distribution. The opposite occurs
at the right tail, which extends further in the positive direction in the Normal
than the skewed-left distribution.

The skewed-left plot in the middle panel highlights several hallmarks of a
skewed-left distribution including 1) a median line (the horizontal line within
the box) that is closer to the 75th percentile line (the lower end of the box) than
to the 25th percentile line (the upper end of the box), 2) a longer lower than
upper whisker (the vertical lines extending out of the box), 3) more outliers
below the lower whisker than above the upper whisker, and 4) a lengthened,
downward smear of the scatter of points at the low end of the values, relative
to the more compact smear at the upper end of the values.

Heavy Tail Q-Q
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Heavy Tail

The Normal Q-Q plot of a sample from a heavy-tail distribution is characterized
by sample quantiles at the low (left) end being more negative than the expected
Normal quantiles and quantiles at the high (right) end that are more positive
than the expected normal quantiles.

The histograms in the left panel explain this pattern. At each tail, the heavy-
tail distribution has more density – there are more values far from the mean
– compared to the Normal distribution. This is the origin of “heavy tail”. It is
easy to see from this that, if we rank the values of each distribution from small to
large (these are the quantiles), the lower quantiles of the heavy tail distribution
will be more negative than the matching quantile of the Normal distribution.
For example, the 10th quantile for the heavy-tail distribution will be much more
negative than the 10th quantile for the Normal distribution. Likewise, the upper
quantiles of the heavy tail distribution will be more positive than the matching
quantile of the Normal distribution. For example, the 99,990th quantile for the
heavy-tail distribution will be much more positive than the 99,990th quantile
for the Normal distribution.

The heavy-tail plot in the middle panel shows more boxplot outliers than in the
Normal plot. This would be hard to recognize in a plot of real data.

11.3.3.1 Mapping characteristic departures on a Q-Q plot to specific
distributions

1. Continuous response variables of length, area, weight, or duration will
often look like samples from a continous probability distribution that is
right-skewed, such as the lognormal or gamma distributions.

2. Count response variables will frequently look like samples from a discrete
probability distribution that is right-skewed, such as the poisson, quasi-
poisson, or negative binomial distributions.

3. Proportion (fraction of a whole) response variables will frequently look
like samples from a continuous probability distribution bounded by 0 and
1, such as the beta distribution. Samples from a beta distribution can be
left skewed, if the mean is near 1, right-skewed, if the mean is near zero,
or symmetrical, if the mean is near 0.5.
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11.3.3.2 Pump your intuition – confidence bands of a Q-Q plot

In introducing the confidence bands of the Q-Q plot above, I stated “A pattern
of observed quantiles with some individual points outside of these boundaries
indicates a sample that would be unusual if sampled from a Normal distribution.”
Let’s use a parametric bootstrap to explore this.

1. Sample n values from a Normal distribution
2. Compute the sample quantiles by re-ordering the residuals of the sampled

values from the sampled mean, from most negative to most positive.
3. Plot the quantiles against Normal quantiles for n points.
4. Repeat steps 1-3 n_iter times, superimposing the new sample quantiles

over all previous sample quantiles. This creates a band of all sample
quantiles over n_iter iterations of sampling n values from a Normal dis-
tribution.

5. At each value of the Normal quantile, compute the 95 percentile range of
the sampled quantiles. Draw a ribbon inside these boundaries.

n_iter <- 1000
n <- 20
normal_qq <- ppoints(n) %>%
qnorm()

sample_qq <- numeric(n_iter*n)
inc <- 1:n
for(iter in 1:n_iter){

y <- rnorm(n)
y_res <- y - mean(y)
sample_qq[inc] <- y_res[order(y_res)]
inc <- inc + n

}

qq_data <- data.table(normal_qq = normal_qq,
sample_qq = sample_qq)

qq_ci <- qq_data[, .(median = median(sample_qq),
lower = quantile(sample_qq, 0.025),
upper = quantile(sample_qq, 0.975)),

by = normal_qq]

ggplot(data = qq_data,
aes(x = normal_qq,

y = sample_qq)) +
geom_point(alpha = 0.2) +
geom_ribbon(data = qq_ci,

aes(ymin = lower,
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ymax = upper,
y = median,
fill = "band"),

fill = pal_okabe_ito[1],
alpha = 0.3) +

xlab("Normal Quantile") +
ylab("Sample Quantile") +
theme_grid() +

NULL

11.3.4 Model checking homoskedasticity

11.4 Using R

Source: Wellenstein, M.D., Coffelt, S.B., Duits, D.E., van Miltenburg, M.H.,
Slagter, M., de Rink, I., Henneman, L., Kas, S.M., Prekovic, S., Hau, C.S. and
Vrijland, K., 2019. Loss of p53 triggers WNT-dependent systemic inflammation
to drive breast cancer metastasis. Nature, 572(7770), pp.538-542.

Public source

Data source

data_from <- "Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis"
file_name <- "41586_2019_1450_MOESM3_ESM.xlsx"
file_path <- here(data_folder, data_from, file_name)

treatment_levels <- c("Trp53+/+", "Trp53-/-")
fig1f <- read_excel(file_path,

sheet = "Fig. 1f",
range = "A2:B23") %>%

data.table() %>%
melt(measure.vars = treatment_levels,

variable.name = "treatment",
value.name = "il1beta")

fig1f[, treatment := factor(treatment, treatment_levels)]

# be careful of the missing data. This can create mismatch between id and residual unless specified in lm

# head(fig1f)

Fit a linear model

https://www.nature.com/articles/s41586-019-1450-6
https://www.nature.com/articles/s41586-019-1450-6
https://www.nature.com/articles/s41586-019-1450-6
https://www.nature.com/articles/s41586-019-1450-6
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6707815/
https://www.nature.com/articles/s41586-019-1450-6#Sec22
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m1 <- lm(il1beta ~ treatment,
data = fig1f)

11.4.1 Normal Q-Q plots

car::qqPlot has several important arguments to control the type of Q-Q plot.
The function uses base graphics instead of ggplot2. Typically, these plots would
not be published other than possibly a supplement. Q-Q Plots and Worm Plots
from Scratch is a good source of some of the arguments in qqPlot. Three
important arguments are:

1. simulate. If passing a lm object, then the default confidence band is gener-
ated by a parametric bootstrap (simulate = TRUE). This band will differ
somewhat each time you replot unless you set the seed with set.seed.
Setting the argument simulate = FALSE returns the parametric band.

2. line. If passing a lm object, then the default line is a fit from a robust re-
gression (line = "robust"). Setting the argument line = "quartiles"
fits a line throught the 25th and 75th percentile (or “quartiles”) quantiles.

3. id. The default identifies the index of the two points with the most extreme
quartiles. Set to FALSE to hide.

The robust line is more sensitive to departures from Normality than the quartiles
line.

# defaults: robust line with bootstrap CI
set.seed(1)
qqPlot(m1, id = FALSE)
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https://www.tjmahr.com/quantile-quantile-plots-from-scratch/
https://www.tjmahr.com/quantile-quantile-plots-from-scratch/


11.4. USING R 321

# classic: standard line with parametric CI
qqPlot(m1,

line = "quartiles",
simulate = FALSE,
id = FALSE)

ggpubr::ggqqplot generates a pretty, ggplot2 based Normal Q-Q plot, using
the standard method for computing the line and confidence band.

m1_residuals <- data.table(m1_residuals = residuals(m1))
m1_residuals[, studentized := m1_residuals/sd(m1_residuals)]
ggqqplot(data = m1_residuals,

x = "studentized")
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Chapter 12

Model Fitting and Model
Fit (OLS)

12.1 Least Squares Estimation and the Decom-
position of Variance

The linear models in the last chapter and for much of this book are fit to data
using a method called “ordinary least squares” (OLS). This chapter explores the
meaning of OLS and related statistics, including R2, as well as some alternative
methods for bivariate regression.

323
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12.2 OLS regression
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The fake data illustrated in the scatterplot above (Figure ??) were modeled to
look something like the squirrel fecal cortisol metabolite data in the previous
chapter. If a typical student is asked to draw a regression line through the
scatter, they typically draw a line similar to that in Figure ??. This line is
not the OLS regression line but the major axis of an elipse that encloses the
scatter of points–that students invariably draw this line suggests that the brain
interprets the major axis of an elliptical scatter of points as a trend (This major
axis line is an alternative method for estimating a slope and is known as standard
major-axis regression. More about this at the end of this chapter.)
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The OLS regression line is the red line in Figure ?? – the standard major axis
line is left for comparison). The OLS regression line

1. passes through the bivariate mean (x̄, ȳ) of the scatter, and
2. minimizes the sum of the squared deviations from each point to it’s mod-

eled value
∑

(yi − ŷi)2

There are an infinite number of lines that pass through the bivariate mean (think
of anchoring a line at the bivariate mean and spinning it). The OLS line is the
line that minimizes the squared (vertical) deviations (“least squares”).

For a bivariate regression, the slope (coefficient b1 of X) of the OLS model fit
is computed by

b1 = COV(X, Y )
VAR(X)

(12.1)

This equation is worth memorizing. We will generalize this into a more flexible
equation in a few chapters.

12.3 How well does the model fit the data? R2

and “variance explained”

Let’s switch to real data.
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1. Source: Dryad Digital Repository. https://doi.org/10.5061/dryad.056r5
2. File: “Diet-shift data.xls”

Fish require arachidonic acid (ARA) and other highyly unsaturated fatty acids
in their diet and embryo and yolk-stage larvae obtain these from yolk. Fuiman
and Faulk (xxx) designed an experiment to investigate if red drum (Sciaenops
ocellatus) mothers provision the yolk with ARA from recent dietary intake or
from stored sources in somatic tissues. The data below are from experiment 8.
The x-axis is the days since a diet shift to more and less ARA (days) and the
y-axis is the ARA content of the eggs (ARA).
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The statistic R2 is a measure of the fit of a model to data. The R2 for the fit
of the egg data is 0.42. R2 is the fraction of two variances VAR(Model)

VAR(Y ) , or, the
fraction of the variance of Y “explained by the model.” The value of R2 ranges
from zero (the fit cannot be any worse) to one (the fit is “pefect”).

To understand R2, and its computation, a bit more, let’s look at three kinds of
deviations.

Figure 12.1A shows the deviations from the measured values to the mean value
(dashed line). These are the deviations in the numerator of the equation to
compute the variance of ARAEGGM G. Figure 12.1B shows the deviations of
the measured values from the modeled values. The sum of these deviations
squared is what is minimized by the OLS fit. The bigger these deviations are,
the worse the model fit. Figure 12.1C shows the deviations of the modeled
values to the mean value. The bigger these deviations are, the better the model
fit.

https://doi.org/10.5061/dryad.056r5
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Figure 12.1: Three kinds of deviations from a fit model. A. Deviations of the
measured values from the mean. These are in the numerator of the equation of
the sample variance. The dashed line is the mean ARA content. B. Deviations
of the measured values from the modeled values. The sum of these deviations
squared is what is minimized in an OLS fit. C. Deviations of the modeled values
from the mean ARA content. The measured values are in gray, the modeled
values in black
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The sums of the squares of these deviations (or “sums of squares”) have names:

SS(total) =
∑

(yi − ȳ)2 (12.2)

SS(error) =
∑

(yi − ŷi)2 (12.3)

SS(model) =
∑

(ŷi − ȳ)2 (12.4)

Again, SS(total) is the numerator of the equation for the sample variance. It is
called “s-s-total” because SS(total) = SS(model) + SS(error). That is, the total
sums of squares can be decomposed into two components: the modeled sums
of squares and the error sums of squares. Given these components, it’s easy to
understand R2

R2 = SS(model)
SS(total)

(12.5)

R2 is the fraction of the total sums of squares that is due to (or “explained by”)
the model sums of squares. Above I said that R2 is the fraction of variance
explained by the model. Equation xxx is a ratio of variance, but the (n − 1)−1

in both the numerator and the denominator cancel out. Finally, many sources
give the equation for R2 as

R2 = 1 − SS(error)
SS(total)

(12.6)

which is an obvious alternative given the decomposition. I prefer the former
equation because it emphasizes the model fit instead of model ill-fit.



Chapter 13

Best practices – issues in
inference

13.1 Multiple testing

Multiple testing is the practice of adjusting p-values (and less commonly con-
fidence intervals) to account for the expected increase in the frequency of Type
I error when there are multiple tests (typically Null Hypothesis Significance
Tests). Multiple testing tends to arise in two types of situations:

1. Multiple pairwise contrasts among treatment levels (or combinations of
levels) are estimated.

2. The effects of a treatment on multiple responses are estimated. This can
arise if

a. there are multiple ways of measuring the consequences of something
– for example, an injurious treatment on plant health might effect
root biomass, shoot biomass, leaf number, leaf area, etc.

b. one is exploring the consequences of an effect on many, many out-
comes – for example, the expression levels of 10,000 genes between
normal and obese mice.

Despite the ubiquitous presence of multiple testing in elementary biostatistics
textbooks, in the applied biology literature, and in journal guidelines, the prac-
tice of adjusting p-values for multiple tests is highly controversial among statis-
ticians. My thoughts:

1. In situations like (1) above, I advocate that researchers do not adjust p-
values for multiple tests. In general, its a best practice to only estimate

329
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contrasts for which you care about because of some a priori model of how
the system works. If you compare all pairwise contrasts of an experiment
with many treatment levels and/or combinations, expect to find some false
discoveries.

2. In situations like (2a) above, I advocate that researchers do not adjust
p-values for multiple tests.

3. In situations like (2b) above, adjusting for the False Discovery Rate is
an interesting approach. But, recognize that tests with small p-values are
highly provisional discoveries of a patterns only and not a discovery of the
causal sequelae of the treatment. For that, one needs to do the hard work
of designing experiments that rigorously probe a working, mechanistic
model of the system.

Finally, recognize that anytime there are multiple tests, Type M errors will arise
due to the vagaries of sampling. This means that in a rank-ordered list of the
effects, those at the top have measured effects that are probably bigger than
the true effect. An alternative to adjusted p-values is a penalized regression
model that shrinks effects toward the mean effect.

13.1.1 Some background

13.1.1.1 Family-wise error rate

The logic of multiple testing goes something like this: the more tests that a
researcher does, the higher the probability that a false positive (Type I error)
will occur, therefore a researcher should should adjust p-values so that the Type
I error over the set (or “family”) of tests is 5%. This adjusted Type I error rate
is the “family-wise error rate”.

If a researcher carries out multiple tests of data in which the null hypothesis is
true, what is the probability of finding at least one Type I error? This is easy
to compute. If the frequency of Type I error for a single test is α, then the
probability of no Type I error is 1−α. For two tests, the probability of no Type
I error in either test is the product of the probability for each test, or (1 − α)2.
By the same logic, for m tests, the probabilty of no type I error in any of the
tests is (1 − α)m. The probability of at least one type one error, across the m
tests, then, is 1− (1−α)m. A table of these probabilities for different m is given
below. If the null is true in all tests, then at least one Type I error is more likely
than not if there are 14 tests, and close to certain if there more than 50 tests.
Don’t skip over this paragraph – the logic is important even if I don’t advocate
adjusting for multiple tests.

Probability of at least one type I error within the set of multiple tests, for data
in which the null hypothesis is true. The Type I error rate for a single test is
0.05. The number of tests is m. The probability is p.
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m

p

1

0.05

3

0.14

6

0.26

10

0.40

50

0.92

100

0.99

13.1.1.2 False discovery rate

If a researcher carries out thousands of tests to “discover” new facts, and uses p <
0.05 as evidence of discovery, then what is the frequency of false discoveries?

13.1.1.3 p-value filter I – Inflated effects

If a researcher caries out many tests, and ranks the effects by magnitude or p-
value, then the effect sizes of the largest effects will be inflated. Before explaining
why, let’s simulate this using an experiment of allelopathic effects of the invasive
garlic mustard (Alliaria petiolata) on gene expression in the native American
ginseng (Panax quinquefolius). In the treated group, we have ten pots, each
with an American ginseng plant grown in a container with a mustard plant. In
the control group, we have ten pots, each with an American ginseng plant grown
in a container with another American ginseng. I’ve simulated the response of
10,000 genes. The treatment has a true effect in 10% of the 10,000 genes but
most effects are very small.

set.seed(4)
p <- 10^4 # number of genes
pt <- 0.1*p # number of genes with true response to treatment
n <- 10
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# sample the gene effects from an exponential distribution
theta <- .3
beta <- c(rexp(pt, rate=1/theta),

rep(0, (p-pt))) # the set of 10,000 effects

# sample the variance of the expression level with a gamma, and set a minimum
sigma <- rgamma(p, shape=2, scale=1/4) + 0.58
# quantile(sigma, c(0.001, 0.1, 0.5, 0.9, 0.999))

Y1 <- matrix(rnorm(n*p, mean=0, sd=rep(sigma, each=n)), nrow=n)
Y2 <- matrix(rnorm(n*p, mean=rep(beta, each=n), sd=rep(sigma, each=n)), nrow=n) # check
# use n <- 10^4 to check
# apply(y2, 2, mean)[1:5]
# b[1:5]
x <- rep(c("cn","tr"), each=n)
bhat <- numeric(p)
p.value <- numeric(p)
sigma_hat <- numeric(p)
for(j in 1:p){
fit <- lm(c(Y1[,j], Y2[, j]) ~ x)
bhat[j] <- coef(summary(fit))["xtr", "Estimate"]
p.value[j] <- coef(summary(fit))["xtr", "Pr(>|t|)"]
sigma_hat[j] <- sqrt(sum(fit$residuals^2)/fit$df.residual)

}

The top 10 genes ranked by p-value. Rank is the rank of the true effect, from
large to small.

effect

estimate

sigma

sd

p.value

relative true effect

rank

2.23

2.67

0.81

0.55

0.0000000
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Figure 13.1: A histogram of the distribution of the 10,000 effects
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0.0001488

0.00
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-1.78

1.33

0.84

0.0001733

0.19

244

The table above lists the top 10 genes ranked by p-value, using the logic that
the genes with the smallest p values are the genes that we should pursue with
further experiments to understand the system. Some points

1. Six of the top ten genes with biggest true effects are not on this list. And,
in the list are three genes with true effects that have relatively low ranks
based on true effect size (column ”rank”) and two genes that have no true
effect at all. Also in this list is one gene with an estimated effect (-1.78)
that is opposite in sign of the true effect (but look at the p-value!)

2. The estimate of the effect size for all top-ten genes are inflated. The
average estimate for these 10 genes is 1.47 while the average true effect
for these 10 genes is 0.92 (the estimate ).

3. The sample standard deviation (sd) for all top-ten genes is less than the
true standard deviation (sigma), in some cases substantially.

The consequence of an inflated estimate of the effect and a deflated estimate
of the variance is a large t (not shown) and small p. What is going on is an
individual gene’s estimated effect and standard deviation are functions of 1)
the true value and 2) a random sampling component. The random component
will be symmetric, some effects will be overestimated and some underestimated.
When we rank the genes by the estimate of the effect or t or p, some of the
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genes that have “risen to the top” will be there because of a large, positive,
sampling (random) component of the effect and/or a large, negative, sampling
component of the variance. Thus some genes’ high rank is artificial in the sense
that it is high because of a random fluke. If the experiment were re-done, these
genes at the top because of a large, random component would (probably) fall
back to a position closer to their expected rank (regression to the mean again).

In the example here, all genes at the top have inflated estimates of the effect
because of the positive, random component. This inflation effect is a function of
the signal to noise ratio, which is controled by theta and sigma in the simulation.
If theta is increased (try theta=1), or if sigma is decreased, the signal to noise
ratio increases (try it and look at the histogram of the new distribution of effects)
and both the 1) inflation and the 2) rise to the top phenomenon decrease.

13.1.1.4 p-hacking

13.1.2 Multiple testing – working in R

13.1.2.1 Tukey HSD adjustment of all pairwise comparisons

The adjust argument in emmeans::contrast() controls the method for p-value
adjustment. The default is “tukey”.

1. “none” – no adjustment, in general my preference.
2. “tukey” – Tukey’s HSD, the default
3. “bonferroni” – the standard bonferroni, which is conservative
4. “fdr” – the false discovery rate
5. “mvt” – based on the multivariate t distribution and using covariance

structure of the variables

The data are those from Fig. 2D of “Data from The enteric nervous system
promotes intestinal health by constraining microbiota composition”. There is a
single factor with four treatment levels. The response is neutrophil count.

No adjustment:

m1 <- lm(count ~ donor, data=exp2d)
m1.emm <- emmeans(m1, specs="donor")
m1.pairs.none <- contrast(m1.emm, method="revpairwise", adjust="none")
summary(m1.pairs.none, infer=c(TRUE, TRUE))

## contrast estimate SE df lower.CL upper.CL t.ratio p.value
## gf - wt -1.502 1.48 58 -4.47 1.47 -1.013 0.3153
## sox10 - wt 4.679 1.23 58 2.23 7.13 3.817 0.0003
## sox10 - gf 6.182 1.45 58 3.29 9.08 4.276 0.0001
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## iap_mo - wt -0.384 1.53 58 -3.45 2.68 -0.251 0.8025
## iap_mo - gf 1.118 1.71 58 -2.31 4.54 0.654 0.5159
## iap_mo - sox10 -5.064 1.49 58 -8.05 -2.07 -3.391 0.0013
##
## Confidence level used: 0.95

Tukey HSD:

m1.pairs.tukey <- contrast(m1.emm, method="revpairwise", adjust="tukey")
summary(m1.pairs.tukey, infer=c(TRUE, TRUE))

## contrast estimate SE df lower.CL upper.CL t.ratio p.value
## gf - wt -1.502 1.48 58 -5.43 2.42 -1.013 0.7426
## sox10 - wt 4.679 1.23 58 1.44 7.92 3.817 0.0018
## sox10 - gf 6.182 1.45 58 2.36 10.01 4.276 0.0004
## iap_mo - wt -0.384 1.53 58 -4.43 3.66 -0.251 0.9944
## iap_mo - gf 1.118 1.71 58 -3.41 5.64 0.654 0.9138
## iap_mo - sox10 -5.064 1.49 58 -9.01 -1.11 -3.391 0.0067
##
## Confidence level used: 0.95
## Conf-level adjustment: tukey method for comparing a family of 4 estimates
## P value adjustment: tukey method for comparing a family of 4 estimates

13.1.3 False Discovery Rate

13.2 difference in p is not different

13.3 Inference when data are not Normal

No real data are normal, although many are pretty good approximations of a
normal distribution.

I’ll come back to this point, but first, let’s back up. Inference in statistical
models (standard errors, confidence intervals, p-values) are a function of the
modeled distributions of the parameters (for linear models, this parameter is
the conditional (or error) variance σ2); if the data do not approximate the mod-
eled distribution, then inferential statistics might be to liberal (standard errors
are too small, confidence intervals are too narrow, Type I error is more than
nominal) or to conservative (standard errors are too large, confidence intervals
are too wide, Type I error is less than nominal).

Linear models assume that “the data” (specifically, the conditional response, or,
equivalently, the residuals from the model) approximate a Normal distribution.
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Chapter xxx showed how to qualitatively assess how well residuals approximate
a Normal distribution using a Q-Q plot. If the researcher concludes that the data
poorly approximate a normal distribution because of outliers, the researcher can
use robust methods to estimate the parameters. If the approximation is poor
because the residuals suggest a skewed distribution or one with heavy or light
tails, the researcher can choose among several strategies

1. continue to use the linear model; inference can be fairly robust to non-
normal data, especially when the sample size is not small.

2. use a generalized linear model (GLM), which is appropriate if the condi-
tional response approximates any of the distributions that can be modeled
using GLM (Chapter xxx)

3. use bootstrap for confidence intervals and permutation test for p-values
4. transform the data in a way that makes the conditional response more

closely approximate a normal distribution.
5. use a classic non-parametric test, which are methods that do not assume

a particular distribution

This list is roughly in the order of how I would advise researchers, although
the order of 1-3 is pretty arbitrary. I would rarely advise a researcher to use
(4) and never advise (5). Probably the most common strategies in the biology
literature are (4) and (5). The first is also common but probably more from
lack of recognition of issues or because a “test of normality” failed to reject that
the data are “not normal”.

On this last point, do not use the p-value from a “test for normality” (such
as a Shapiro-Wilk test) to decide between using the linear model (or t-test or
ANOVA) and an alternative such as a generalized linear model (or transforma-
tion or non-parametric test). No real data is normal. Tests of normality will
tend to “not reject” normality (p > 0.05) when the sample size is small and
“reject” normality (p < 0.05) when the sample size is very large. But again, a
“not rejected” hypothesis test does not mean the null (in this case, the data are
normal) is true. More importantly, where the test for normality tends to fail
to reject (encouraging a researcher to use parametric statistics) is where para-
metric inference performs the worst (because of small n) and where the test
for normality tends to reject (encouraging a researcher to use non-parametric
statistics) is where the parametric inference performs the best (because of large
sample size) (Lumley xxx).

13.3.1 Working in R

The data for demonstrating different strategies are from Fig. 4A of “Data
from The enteric nervous system promotes intestinal health by constraining
microbiota composition”. There is a single factor with two treatment levels.
The response is neutrophil count.
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Figure 13.2: Distribution of the counts in the wildtype (WT) and sox10 knock-
out (sox10-) groups. Both groups show a strong right skew, which is common
with count data.

A linear model to estimate the treatment effect and 95% confidence interval.

m1 <- lm(count ~ treatment, data=fig4a)
m1_emm <- emmeans(m1, specs="treatment")
summary(contrast(m1_emm, method="revpairwise"),

infer=c(TRUE, TRUE))

## contrast estimate SE df lower.CL upper.CL t.ratio p.value
## sox10 - wt 5.16 1.75 174 1.7 8.62 2.947 0.0037
##
## Confidence level used: 0.95

13.3.2 Bootstrap Confidence Intervals

A bootstrap confidence interval is computed from the distribution of a statistic
from many sets of re-sampled data. The basic algorithm is

1. compute the statistic for the observed data, assign this to θ1
2. resample n rows of the data, with replacement. “with replacement” means

to sample from the entire set of data and not the set that has yet to
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be sampled. n is the original sample size; by resampling n rows with
replacement, some rows will be sampled more than once, and some rows
will not be sampled at all.

3. compute the statistic for the resampled data, assign these to θ2..m

4. repeat 2 and 3 m − 1 times
5. Given the distribution of m estimates, compute the lower interval as the

α
2 th percentile and the upper interval as the 1 − α

2 th percentile. For 95%
confidence intervals, these are the 2.5th and 97.5th percentiles.

Let’s apply this algorithm to the data from fig4A neutrophil count data in the
coefficient table above. The focal statistic in these data is the difference in the
mean count for the sox10 and wild type groups (the parameter for treatment
in the linear model). The script below, which computes the 95% confidence
intervals of this difference, resamples within strata, that is, within each group;
it does this to preserve the original sample size within each group.

n_iter <- 5000
b1 <- numeric(5000)
inc <- 1:nrow(fig4a) # the rows for the first iteration are all rows, so this is the observed effect
for(i in 1:n_iter){

# inc creates the index of rows to resample preserving the sample size specific to each group
b1[i] <- coef(lm(count ~ treatment, data=fig4a[inc, ]))["treatmentsox10"]
inc <- c(sample(which(fig4a[, treatment] == "wt"), replace=TRUE),

sample(which(fig4a[, treatment] == "sox10"), replace=TRUE))
}
ci <- quantile(b1, c(0.025, 0.975))
c(contrast = b1[1], ci[1], ci[2])

## contrast 2.5% 97.5%
## 5.163215 2.077892 8.264316

The intervals calculated in step 5 are percentile intervals. A histogram of the
the re-sampled differences helps to visualize the bootstrap (this is a pedagogical
tool, not something you would want to publish).

13.3.2.1 Some R packages for bootstrap confidence intervals

Percentile intervals are known to be biased, meaning the intervals are shifted.
The boot package computes a bias-corrected interval in addition to a percentile
interval. boot is a very powerful bootstrap package but requires the researcher
to write functions to compute the parameter of interest. simpleboot provides
functions for common analysis that does this for you (in R speak, we say that
simpleboot is a “wrapper” to boot). The function simpleboot::two.boot
computes a boot-like object that returns, among other values, the distribution
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Figure 13.3: Distribution of the 5000 resampled estimates of the difference in
means between the sox10 and wt treatment levels. The dashed lines are located
at the 2.5th and 97.5th percentiles of the distribution.
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of m statistics. The simpleboot object is then be fed to boot::boot.ci to get
bias-corrected intervals.

bs_diff <- two.boot(fig4a[treatment=="sox10", count],
fig4a[treatment=="wt", count],
mean,
R=5000)

boot.ci(bs_diff, type="bca")

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 5000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = bs_diff, type = "bca")
##
## Intervals :
## Level BCa
## 95% ( 2.087, 8.410 )
## Calculations and Intervals on Original Scale

13.3.3 Permutation test

A permutation test effectively computes the probability that a random assign-
ment of a response to a particular value of X generates a test statistic as large or
larger than the observed statistic. If this probability is small, then this “random
assignment” is unlikely. From this we infer that the actual assignment matters,
which implies a treatment effect.

The basic algorithm is

1. compute the test statistic for the observed data, assign this to θ1
2. permute the response
3. compute the test statistic for the permuted data, assign these to θ2..m

4. repeat 2 and 3 m − 1 times
5. compute p as

pperm = Nθi≥θ1

m
(13.1)

This is easily done with a for loop in which the observed statistic is the first
value in the vector of statistics. If this is done, the minimum value in the
numerator for the computation of pperm is 1, which insures that pperm is not
zero.
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The test statistic depends on the analysis. For the simple comparison of means,
a simple test statistic is the difference in means. This is the numerator of the
test statistic in a t-test. The test has more power if the test-statistic is scaled
(Manley xxx), so a better test statistic would be t, which scales the difference
by its standard error.

Here, I implement this algorithm. The test is two-tailed, so the absolute differ-
ence is recorded. The first value computed is the observed absolute difference.

set.seed(1)
n_permutations <- 5000
d <- numeric(n_permutations)

# create a new column which will contain the permuted response
# for the first iteration, this will be the observed order
fig4a[, count_perm := count]

for(i in 1:n_permutations){
d[i] <- abs(t.test(count_perm ~ treatment, data = fig4a)$statistic)

# permute the count_perm column for the next iteration
fig4a[, count_perm := sample(count)]

}
p <- sum(d >= d[1])/n_permutations
p

## [1] 0.002

13.3.3.1 Some R packages with permutation tests.

lmPerm::lmp generates permutation p-values for parameters of any kind of lin-
ear model. The test statistic is the sum of squares of the term scaled by the
residual sum of squares of the model.

set.seed(2)
coef(summary(lmp(count ~ treatment, perm="Prob", Ca=0.01,

data=fig4a)))

## [1] "Settings: unique SS "

## Estimate Iter Pr(Prob)
## (Intercept) 13.694815 5000 0.0042
## treatment1 -2.581608 5000 0.0042
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13.3.4 Non-parametric tests

1. In general, the role of a non-parametric test is a better-behaved p-value,
that is, one whose Type I error is well controlled. As such, non-parametric
tests are more about Null-Hypothesis Statistical Testing and less (or not
at all) about Estimation.

2. In general, classic non-parametric tests are only available for fairly simple
experimental designs. Classic non-parametric tests include

• Independent sample (Student’s) t test: Mann-Whitney-Wilcoxan
• Paired t test: Wilcoxan signed-rank test

One rarely sees non-parametric tests for more complex designs that include
covariates, or multiple factors, but for these, one could 1) convert the response
to ranks and fit the usual linear model, or 2) implement a permutation test that
properly preserves exchangeability.

Permutation tests control Type I error and are powerful. That said, I would
recommend a permutation test as a supplment to, and not replacement of,
inference from a generalized linear model.

A non-parametric (Mann-Whitney-Wilcoxon) test of the fake data generated
above

wilcox.test(count ~ treatment, data=fig4a)

##
## Wilcoxon rank sum test with continuity correction
##
## data: count by treatment
## W = 2275, p-value = 0.001495
## alternative hypothesis: true location shift is not equal to 0

13.3.5 Log transformations

Many response variables within biology, including count data, and almost any-
thing that grows, are right skewed and have variances that increase with the
mean. A log transform of a response variable with this kind of distribution will
tend to make the residuals more approximately normal and the variance less
dependent of the mean. At least two issues arise

1. if the response is count data, and the data include counts of zero, then
a fudge factor has to be added to the response since log(0) doesn’t exist.
The typical fudge factor is to add 1 to all values, but this is arbitrary and
results do depend on the magnitude of this fudge factor.
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2. the estimates are on a log scale and do not have the units of the response.
The estimates can be back-transformed by taking the exponent of a co-
efficient or contrast but this itself produces problems. For example, the
backtransformed mean of the log-transformed response is not the mean
on the origianl scale (the arithmetic mean) but the geometric mean.
Geometric means are smaller than arithmetic means, appreciably so if the
data are heavily skewed. Do we want our understanding of a system to be
based on geometric means?

13.3.5.1 Working in R – log transformations

If we fit a linear model to a log-transformed response then the resulting coef-
ficients and predictions are on the log scale. To make interpretation of the
analysies easier, we probably want to back-transform the coefficients or the
predictions to the original scale of the response, which is called the response
scale.

m2 <- lm(log(count + 1) ~ treatment, data=fig4a)
(m2_emm <- emmeans(m2,

specs="treatment",
type = "response"))

## treatment response SE df lower.CL upper.CL
## wt 8.22 0.965 174 6.5 10.3
## sox10 12.59 0.934 174 10.9 14.6
##
## Confidence level used: 0.95
## Intervals are back-transformed from the log(mu + 1) scale

The emmeans package is amazing. Using the argument type = "response"
not only backtransforms the means to the response scale but also substracts the
1 that was added to all values in the model.
What about the effect of treatment on count?

summary(contrast(m2_emm,
method="revpairwise",
type = "response"),

infer=c(TRUE, TRUE))

## contrast ratio SE df lower.CL upper.CL t.ratio p.value
## sox10 / wt 1.47 0.185 174 1.15 1.89 3.100 0.0023
##
## Confidence level used: 0.95
## Intervals are back-transformed from the log scale
## Tests are performed on the log scale
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It isn’t necessary to backtransform the estimated marginal means prior to com-
puting the contrasts as this can be done in the contrast function itself. Here,
the type = "response" argument in the contrast function is redundant since
this was done in the computation of the means. But it is transparent so I want
it there.

Don’t skip this paragraph Look at the value in the “contrast” column – it is
“sox10 / wt” and not “sox10 - wt”. The backtransformed effect is a ratio instead
of a difference. A difference on the log scale is a ratio on the response
scale because of this equality

exp(µ2 − µ1) = exp(µ2)
exp(µ1)

) (13.2)

The interpretation is: If b∗ is the backtransformed effect, then, given a one unit
increase in X, the expected value of the response increases b∗×. For a categorical
X, this means the backtransformed effect is the ratio of backtransformed means
– its what you have to multiply the mean of the reference by to get the mean of
the treated group. And, because it is the response that is log-transformed, these
means are not arithemetic means but geometric means. Here, this is complicated
by the model – the response is not a simple log transformation but log(response
+ 1). It is easy enough to get the geometric mean of the treated group –
multiply the backtransformed intercept by the backtransformed coefficient and
then subtract 1 – but because of this subtraction of 1, the interpretation of the
backtransformed effect is awkward at best (recall that I told you that a linear
model of a log transformed response, and especially the log of the response plus
one, leads to difficulty in interpreting the effects).

# backtransformed control mean -- a geometric mean
mu_1 <- exp(coef(m2)[1])

# backtransformed effect
b1_star <- exp(coef(m2)[2])

# product minus 1
mu_1*b1_star -1

## (Intercept)
## 12.59357

# geometric mean of treatment group
n <- length(fig4a[treatment=="sox10", count])
exp(mean(log(fig4a[treatment=="sox10", count+1])))-1

## [1] 12.59357
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Back-transformed effect

m1 <- lm(count ~ treatment, data=fig4a)

exp(coef(m2))

## (Intercept) treatmentsox10
## 9.219770 1.474394

13.3.6 Performance of parametric tests and alternatives

13.3.6.1 Type I error

If we are going to compute a p-value, we want it to be uniformly distributed
“under the null”. A simple way to check this is to compute Type I error. If we
set α = 0.05, then we’d expect 5% of tests of an experiment with no effect to
have p < 0.05.

# first create a matrix with a bunch of data sets, each in its own column
n <- 10
n_sets <- 4000
fake_matrix <- rbind(matrix(rnegbin(n*n_sets, mu=10, theta=1), nrow=n),

matrix(rnegbin(n*n_sets, mu=10, theta=1), nrow=n))
treatment <- rep(c("cn", "tr"), each=n)

tests <- c("lm", "log_lm","mww", "perm")
res_matrix <- matrix(NA, nrow=n_sets, ncol=length(tests))
colnames(res_matrix) <- tests
for(j in 1:n_sets){
res_matrix[j, "lm"] <- coef(summary(lm(fake_matrix[,j] ~ treatment

)))[2, "Pr(>|t|)"]
res_matrix[j, "log_lm"] <- coef(summary(lm(log(fake_matrix[,j] + 1) ~ treatment

)))[2, "Pr(>|t|)"]
res_matrix[j, "mww"] <- wilcox.test(fake_matrix[,j] ~ treatment,

exact=FALSE)$p.value
res_matrix[j, "perm"] <- coef(summary(lmp(fake_matrix[,j] ~ treatment,

perm="Prob", Ca=0.01)))[2, "Pr(Prob)"]
}

apply(res_matrix, 2, function(x) sum(x < 0.05)/n_sets)

## lm log_lm mww perm
## 0.04150 0.05250 0.04350 0.04675
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Type I error is computed for the linear model, the linear model with a log
transformed responpse, Mann-Whitney-Wilcoxon, and permutation tests. All
four tests are slightly conservative for data that look like that modeled. The
computed Type I error of the permutation test is closest to the nominal value
of 0.05.

13.3.6.2 Power

Power is the probability of a test to reject the null hypothesis if the null hy-
pothesis is false (that is, if an effect exists)

Power = Prob(p < α|mathrmeffect ̸= 0) (13.3)

If all we care about is a p − value then we want to use a test that is most
powerful. But, while power is defined using α, we can care about power even
if we don’t consider α to be a very useful concept because increased power also
increases the precision of an estimate (that is, narrows confidence intervals).

# first create a matrix with a bunch of data sets, each in its own column
n <- 5
n_sets <- 4000
fake_matrix <- rbind(matrix(rnegbin(n*n_sets, mu=10, theta=1), nrow=n),

matrix(rnegbin(n*n_sets, mu=20, theta=1), nrow=n))
treatment <- rep(c("cn", "tr"), each=n)

tests <- c("lm", "log_lm","mww", "perm")
res_matrix <- matrix(NA, nrow=n_sets, ncol=length(tests))
colnames(res_matrix) <- tests
for(j in 1:n_sets){
res_matrix[j, "lm"] <- coef(summary(lm(fake_matrix[,j] ~ treatment

)))[2, "Pr(>|t|)"]
res_matrix[j, "log_lm"] <- coef(summary(lm(log(fake_matrix[,j] + 1) ~ treatment

)))[2, "Pr(>|t|)"]
res_matrix[j, "mww"] <- wilcox.test(fake_matrix[,j] ~ treatment,

exact=FALSE)$p.value
res_matrix[j, "perm"] <- coef(summary(lmp(fake_matrix[,j] ~ treatment,

perm="Prob", Ca=0.01)))[2, "Pr(Prob)"]
}

apply(res_matrix, 2, function(x) sum(x < 0.05)/n_sets)

## lm log_lm mww perm
## 0.09200 0.12525 0.08375 0.10600
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As above, Power is computed for the linear model, linear model with a log-
transformed response, Mann-Whitney-Wilcoxan, and permutation, by simulat-
ing a “low power” experiment. The effect is huge (twice as many cells) but the
power is low because the sample size is small (n = 5). At this sample size,
and for this model of fake data, all tests have low power. The power of the log-
transformed response is the largest. A problem is, this is not a test of the means
but of the log transformed mean plus 1. The power of the permutation test is
about 25% larger than that of the linear model and Mann-Whitney-Wilcoxan
test. An advantage of this test is that it is a p-value of the mean. A good
complement to this p-value would be bootstraped confidence intervals. Repeat
this simulation using n = 40 do see how the relative power among the three
change in a simulation of an experiment with more power.
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Part VI: More than one X
– Multivariable Models
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Chapter 14

Adding covariates to a
linear model

In its most general sense, Covariates are simply the X variables in a statistical
model. With data from experiments, “covariates” more typically refers to X
variables that are added to a model to increase precision of the treatment effects.
In observational designs, covariates might be added to a model to 1) increase
predictive ability, 2) because the researcher is interested in specific conditional
effects, or 3) to eliminate confounding. These are discussed in later chapters.
In this chapter, the covariate added to a linear model is a continous variable.
Nothing is fundamentally different if the covariate added is categorical (Sex is
a common categorical covariate).

14.1 Adding covariates can increases the preci-
sion of the effect of interest

I use fake data to introduce the concept of statistical elimination of a covari-
ate in a statistical model. Here I am modeling the effect of a new drug on blood
LDL-C levels. LDL is a kind of lipoprotein, which are particles in the blood that
transport fats and cholesterol to and from different tissues. LDL-C is cholesterol
associated with LDL particles. LDL-C is considered “bad cholesterol” because
LDL is believed to transport cholesterol and other lipids to arterial walls, which
is the basis for atherosclerosis.

Thirty applied biostats students are recruited and are randomly assigned to
either the “placebo” treatment level or “drug” treatment level. The response
is blood LDL-C concentration. The drug manufacturer wants a measure of the
effect of the new drug on ldlc.

353
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Figure 14.1: Effect of drug therapy on plasma LDL-C.

The linear model fit to the simulated LDL-C data is

ldlc = β0 + β1treatmentdrug + ε (14.1)

where treatmentdrug is the dummy variable, which is set to 0 when treatment =
′′placebo′′ and to 1 when treatment = ′′drug′′.

The coefficient table is

## Estimate Std. Error t value Pr(>|t|) 2.5 % 97.5 %
## (Intercept) 106.045 1.070 99.111 0.000 103.854 108.237
## treatmentdrug -1.554 1.513 -1.027 0.313 -4.654 1.546

The response-effect plot shows large overlap in the LDL-C response and treat-
ment effect that is small relative to the noise. “No effect of the drug (p = .31)” is
an incorrect interpretation of the p-value of the significance test of the estimate
of β1. A better interpretation is, the estimated effect is -1.6 but everything from
large, negative effects to moderate positive effects are consistent with the data.

As expert biologists, we know that LDL-C is strongly correlated with age and
there is a large range in age among the Applied Bistats students. If age con-
tributes to a large fraction of the variance in LDL-C among applied biostats
students, then age-related variance might mask the effect of the drug. Here is
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Figure 14.2: Linear regression of ldlc on age fit to the fake LDL-C data. The
points are color coded by treatment.

a plot of LDL-C vs. age, with treatment assignment color coded. Remember,
these are the exact same values of LDL-C as in figure ?? above.

The regression line is the fit of the linear model

ldlc = β0 + β1age + ε (14.2)

The points are color-coded by treatment level but treatment is not in model
(14.2). The color-coding makes it clear that most of the “placebo” data points
are above the line, or have positive residuals from the model, while the “drug”
data points are below the line, or have negative residuals from the model. That
is, at any specific value of age, there is very small overlap of LDL-C
values for drug and for placebo.

What is happening? Age is contributing to the variance of LDL-C, and the
noise in ε in model (14.1), and this added noise makes decreases the precision in
our estimate of the effect of the new drug relative to placebo. When we view the
data as in Figure ??, age is masking the effect. If we could somehow measure
the effect of the drug at a specific age, then we could get a more precise estimate
of the effect. But how to do this? Here are three possible methods. The third
is the only one you should use but the second is useful for understanding the
third.
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1. We could just analyze a subset of the data, that is, only the cases in which
the value of age is nearly equal. This throws away perfectly good data
and, consequently, greatly reduces the sample size and thus precision to
estimate the effect.

2. We could first fit model (14.2) and then use the residuals of this fit as
a new response variable to estimate the effect of drug treatment (this is
what we did by eye in figure 14.2).

step 1:

ldlc = β0 + β1age + ε (14.3)

step 2:

ldlc_residual = β0 + β1treatmentdrug + ε (14.4)

Here, I use this two-stage method because it is useful to introduce the concept
of adjusting for a covariate in a linear model, where the covariate here is
age. But, in general, don’t do this – the method usually “works” pretty well if
the mean of the covariate (the step 1 X variable) is nearly the same in both
treatment levels but artifacts that lead to wrong inference are introduced if the
mean of the covariate is far apart.
Figure ??A is an effect-response plot of the effect of treatment on the LDL-C
adjusted for age using the two-step method. Figure ??B is the original (not
adjust) effect-response plot. The scale of both plots are the same. This means
that the response axis has the same length in both plots and the effects axis
has the same length in both plots. This makes comparing the two easy. Two
patterns are conspicuous

1. The age-adjusted means in Figure ??A are further apart (the difference
is bigger) then the unadjusted means in Figure ??B. This is seen in both
the response and the effects components of the plot.

2. The spread of the residual LDL-C measures within each treatment level in
Figure ??A is less than the spread of the raw LDL-C measures in Figure
??B.

3. The confidence interval of the effect (difference in means) is smaller using
the adjusted model (Figure ??A) than in the unadjusted model (Figure
??B)

4. The p-value of the effect (difference in means) is smaller using the adjusted
model (Figure ??A) than in the unadjusted model (Figure ??B)

These patterns are quantified by the Estimates and SEs of the coefficient table.
Again, I show both for comparison. Can you match comparisons 1-4 above with
the statistic in the coefficient table?
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Figure 14.3: Effect of drug therapy on plasma LDL-C using residuals. Don’t do
this!

Coefficient table of two-step, “adjusted” model (adjusting for age):

## Estimate Std. Error t value Pr(>|t|) 2.5 % 97.5 %
## (Intercept) 1.901 0.556 3.422 0.002 0.763 3.040
## treatmentdrug -3.803 0.786 -4.840 0.000 -5.412 -2.193

Coefficient table of unadjusted model (adjusting for age):

## Estimate Std. Error t value Pr(>|t|) 2.5 % 97.5 %
## (Intercept) 106.045 1.070 99.111 0.000 103.854 108.237
## treatmentdrug -1.554 1.513 -1.027 0.313 -4.654 1.546

It is clear from the plots and the tables that this two-stage adjustment increases
the precision of the estimates of the means and the differences in means by
eliminating the contribution of Age to the variance in LDL-C.

3. The best practice for adjusting for a covariate (or the statistical elim-
ination of a covariate) is to simply add the covariate to the linear model.

ldlc = β0 + β1age + β2treatmentdrug + ε (14.5)
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Figure 14.4: Effect of drug therapy, adjusted for age, on plasma LDL-C.

## Estimate Std. Error t value Pr(>|t|) 2.5 % 97.5 %
## (Intercept) 75.60 3.260 23.20 2.28e-19 68.900 82.30
## age 1.26 0.133 9.47 4.46e-10 0.988 1.53
## treatmentdrug -4.45 0.802 -5.55 6.94e-06 -6.090 -2.81

Again, compare the coefficient table from the model fit without the covariate.

## Estimate Std. Error t value Pr(>|t|) 2.5 % 97.5 %
## (Intercept) 106.00 1.07 99.10 3.36e-37 104.00 108.00
## treatmentdrug -1.55 1.51 -1.03 3.13e-01 -4.65 1.55

1. The adjusted effect is larger (-4.5 vs. -1.6)
2. The adjusted SE of the difference is smaller (0.8 vs. 1.5)
3. The adjusted CIs are narrower (-6.1, -2.8 vs. -4.7, 1.6)
4. The p-value of the adjusted difference is smaller (0.000007 vs. 0.31)

A plot of the model is

14.2 Understanding a linear model with an
added covariate – heart necrosis data

1-Deoxydihydroceramide causes anoxic death by impairing chaperonin-mediated
protein folding

https://www.nature.com/articles/s42255-019-0123-y
https://www.nature.com/articles/s42255-019-0123-y
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Source data

In this article, the researchers are investigating the effects of specific sphin-
golipids on hypoxia (low O2) in the heart. This hypoxia results in necro-
sis (death) of heart tissue. The researchers are specifically looking at the
sphingolipid 1-deoxydihydroceramide (DoxDHCer), which is derived from 1-
deoxysphinganine6 (DoxSa).

In the experiment for Figure 4h, the researchers measured the effect of three
treatments on necrosis.

1. Vehicle – there is no “cardioprotection” from the hypoxia-producing sphin-
golipids. This is the “control”. We expect more necrotic area in this group.
2 Myriocin – a drug that inhibits the enzyme that iniates sphingolipid pro-
duction. This drug should provide protection from the hypoxia-producing
sphingolipids. We expect less necrotic area (or, cardioprotection) in this
group.

2. Myriocin + DoxSa – DoxSa is the specific sphingolipid that the researchers
believe cause the hypoxia/necrosis. The drug should inhibit the produc-
tion of sphingolipids but the added DoxSa should reverses the protec-
tive effect of the drug. If there is a reversal of the protection, then this
supports the hypothesis that DoxSa is the sphingolipid causing the hy-
poxia/necrosis.

The response (Y ) variable is area_of_necrosis – the measured “area” of the
necrotic tissue (area is used here in the sense of “region” and not in the sense of
length times width). The covariate is area_at_risk – the area of heart tissue
that is susceptible to necrosis.

14.2.1 Fit the model

The verbal model with added covariate is

area_of_necrosis ∼ area_at_risk + treatment (M1).

which I’ll name model M1. To understand the model coefficients, it helps to
expand model M1 into the full linear model.

area_of_necrosis = β0+β1area_at_risk+β2treatmentmyriosin+β3treatmentMyriocin + DoxSa+ε
(14.6)

The model includes parameters for the effects of area at risk (β1), the myriosin
treatment (β2) and the myriosin + DoxSa treatment (β3). I explain the inter-
pretation of these effects in “Interpretation of the model coefficients” below.

https://www.nature.com/articles/s42255-019-0123-y#Sec38
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Figure 14.5: The effect of treatment on area of necrosis, adjusted for area of
risk.

fig4h_m1 <- lm(area_of_necrosis ~ area_at_risk + treatment,
data = fig4h)

14.2.2 Plot the model

14.2.3 Interpretation of the model coefficients

fig4h_m1_coef <- cbind(coef(summary(fig4h_m1)),
confint(fig4h_m1))

signif(fig4h_m1_coef, digits = 3)

## Estimate Std. Error t value Pr(>|t|) 2.5 %
## (Intercept) -3.890 2.1200 -1.83 7.63e-02 -8.220
## area_at_risk 0.453 0.0587 7.73 8.28e-09 0.334
## treatmentMyriocin -3.110 1.2300 -2.53 1.64e-02 -5.620
## treatmentMyriocin + DoxSa -3.150 1.3700 -2.31 2.78e-02 -5.930
## 97.5 %
## (Intercept) 0.436
## area_at_risk 0.573
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## treatmentMyriocin -0.611
## treatmentMyriocin + DoxSa -0.367

1. The estimate in the “(Intercept)” row (b0) is the expected value of the
reference (here, this is the Vehicle group) when area_at_risk = 0. Using
Figure 14.5, this can be visualized as the value of Y where the Vehicle line
(the regression line for the reference group) crosses the y-axis (at X = 0).
This is not a meaningful estimate since the area at risk in all hearts is
above zero.

2. The estimate in the “area_at_risk” row (b1) is a common slope for all
three regression lines. Some might refer to this slope as the “effect” of
area_at_risk on area_of_necrosis but I recommend against using this
causal language because the area_at_risk is not randomly assigned –
its purpose in this model (but not necessarily all linear models with an
added covariate) is not for interpretation but for improving inference in
the expimental treatment factor.

3. The estimate in the “treatmentMyriocin” row (b2) is the effect of Myriocin
on area_of_necrosis conditional on (or adjusted for) area_at_risk.
A frequent phrase is “the estimate controlling for area at risk” but avoid
this because “control” implies experimenter intervention and this is not
true for area_at_risk. The value is the difference in the elevation of the
regression line for the reference group and that for the Myriocin group.
This difference is equal to the difference in conditional expectations at a
specific value of the covariate.

b2 = E(area_of_necrosis|treatment = Myriocin, X = x)−E(area_of_necrosis|treatment = V ehicle, X = x)
(14.7)

4. The estimate in the “treatmentMyriocin + DoxSa” row (b3) is the effect of
Myriocin + DoxSa on area_of_necrosis conditional on (or adjusted
for) area_at_risk. It’s interpretation is similar to that for b2.

How do we summarize these interpretations given the motivating hypothesis?
The results do not support the hypothesis. If DoxSa is one of the sphingolipids
inducing hypoxia/necrosis, then we’d expect the Myriocin + DoxSa line to be
elevated above the Myriocin line. But the coefficient table “tests” this prediction
only indirectly. The explicit statistic for this prediction is the (Myriocin +
DoxSa) - Myriocin contrast in the contrast table below.

14.2.4 Everything adds up

Remember that everything adds up in a linear model. A regression line is a line
of expected values (the expectation of Y conditional on X). The point on the
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Vehicle line at area_of_risk = 30 is b0 + b1 · 30. The point on the “Myriocin”
line at area_of_risk = 30 is b0 + b1 · 30 + b2. And, the point on the “Myriocin
+ DoxSa” line at area_of_risk = 30 is b0 +b1 ·30+b3. Understanding how the
components of the linear model add up gives you phenomenonal cosmic power
in statistical analysis.

14.2.5 Interpretation of the estimated marginal means

fig4h_m1_emm <- emmeans(fig4h_m1, specs = "treatment")
fig4h_m1_emm

## treatment emmean SE df lower.CL upper.CL
## Vehicle 11.98 0.839 32 10.3 13.7
## Myriocin 8.87 0.916 32 7.0 10.7
## Myriocin + DoxSa 8.83 1.045 32 6.7 11.0
##
## Confidence level used: 0.95

The values in the column “emmean” are the expected values of each group when
(“conditional on”) area_at_risk is equal to the mean area_at_risk.

14.2.6 Interpretation of the contrasts

fig4h_m1_pairs <- contrast(fig4h_m1_emm,
method = "revpairwise",
adjust = "none") %>%

summary(infer = TRUE)
fig4h_m1_pairs

## contrast estimate SE df lower.CL upper.CL t.ratio
## Myriocin - Vehicle -3.1139 1.23 32 -5.62 -0.611 -2.534
## Myriocin + DoxSa - Vehicle -3.1485 1.37 32 -5.93 -0.367 -2.306
## Myriocin + DoxSa - Myriocin -0.0346 1.43 32 -2.95 2.881 -0.024
## p.value
## 0.0164
## 0.0278
## 0.9809
##
## Confidence level used: 0.95

The values in the column “estimate” are the differences between the estimated
marginal means in the estimated marginal means table. The first two contrasts
are equal to the coefficients b2 and b3 in the coefficient table.
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14.2.7 Adding the covariate improves inference

Compare the effects in Model M1 (with the added covariate) to the effects in a
linear model without the added covariate.

## Estimate Std. Error t value Pr(>|t|) 2.5 %
## (Intercept) 11.200 1.39 8.070 2.60e-09 8.38
## treatmentMyriocin -3.660 2.04 -1.790 8.26e-02 -7.82
## treatmentMyriocin + DoxSa 0.293 2.15 0.136 8.93e-01 -4.09
## 97.5 %
## (Intercept) 14.000
## treatmentMyriocin 0.499
## treatmentMyriocin + DoxSa 4.670

Inference from these two models is very different. From the model adjusting
for area at risk (Model M1), we would conclude “Unexpectedly, the estimated
Myriocin + DoxSa effect (-3.2 mg, 95% CI: -5.9, -0.4) is effectively as big as
the Myriocin alone effect.” By contrast, using the model without the covariate,
we would conclude “Relative to the Myriocin effect, the estimated Myriocin +
DoxSa effect is small (.29 mg), and there is large uncertainty in its direction
and magnitude (95% CI: -4.1, 4.7).” (Note that the authors published a differ-
ent conclusion to either of these. I cannot recover the results leading to their
conclusion using the methods published by the authors.)

14.3 Understanding interaction effects with co-
variates

14.3.1 Fit the model

When we add a continuous covariate to a model we sometimes want to model
the interaction with the categorical factor variable. An interaction effect rep-
resents how the effect of one variable changes given the level of a second variable.
The verbal model with an added interaction effect is

area_of_necrosis ∼ area_at_risk + treatment + area_at_risk ×
treatment (M2)

which I’ll refer to as Model M2. To understand the model coefficients, it helps
to expand this into the full linear model.
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area_of_necrosis = β0 + β1area_at_risk + β2treatmentmyriosin + β3treatmentMyriocin + DoxSa

(14.8)
+ β4area_at_risk · treatmentmyriosin (14.9)
+ β5area_at_risk · treatmentMyriocin + DoxSa

(14.10)
+ ε (14.11)

In addition to the effects of the myriosin (β2) and the myriosin + DoxSa (β3)
treatments of Model M1, Model M2 includes coefficients for two interaction
effects, the interaction between myriosin and area at risk (β4) and the inter-
action between myriosin + DoxSa and area at risk (β4). The parameters β1
and β2 are additive effects because they are linear (additive) “in the X” vari-
ables. The parameters β3 and β4 are non-additive effects because they are
not linear “in the X” variables – these effects are coefficients of an X that is the
product of two variables. You can see this in the model equation but I explain
this further below.
For the goals of the researchers in the heart necrosis study, we specifically would
not want to model the interaction. Nevertheless, we would want to plot the
interaction effect during the “Step 2: examine the data” phase of analysis to be
sure that an additive model is a reasonable model given the data.

# see working in R to understand this model formula
fig4h_m2 <- lm(area_of_necrosis ~ area_at_risk*treatment,

data = fig4h)

14.3.2 Plot the model with interaction effect

14.3.3 Interpretation of the model coefficients

fig4h_m2_coef <- cbind(coef(summary(fig4h_m2)),
confint(fig4h_m2))

round(fig4h_m2_coef[,c(1,2)], digits = 2)

## Estimate Std. Error
## (Intercept) -6.55 3.01
## area_at_risk 0.53 0.09
## treatmentMyriocin 4.90 4.90
## treatmentMyriocin + DoxSa -1.17 5.28
## area_at_risk:treatmentMyriocin -0.25 0.15
## area_at_risk:treatmentMyriocin + DoxSa -0.06 0.14



14.3. UNDERSTANDING INTERACTION EFFECTS WITH COVARIATES365

5

10

15

20

20 30 40 50
Area at risk (mg)

A
re

a 
of

 n
ec

ro
si

s 
(m

g)

treatment Vehicle Myriocin Myriocin + DoxSa

Figure 14.6: The effect of treatment on area of necrosis, adjusted for area of
risk.

1. The estimate in the “(Intercept)” row (b0) is the expected value of the
reference (here, this is the Vehicle group) when area_at_risk = 0. This
is the same interpretation of the intercept in the additive model (Model
M1) but the value is different. This is because the slope coefficient (b1)
estimated in Model M1 is a common slope (to all three groups) estimated
by pooling data from all three groups. The slope coefficient in the non-
additive model (Model M2) is computed from just the reference data.
Because the slope differs between Model M1 and Model M2, the inter-
cept differs (think about why they are necessarily related). As in Model
M1, the value and inferential statistics are meaningful for this parame-
terization but there are slight modifications of the model that can make
this meaningful.

2. The estimate in the “area_at_risk” row (b1) is the slope of the regression
line for the reference (Vehicle) group, that is, the slope conditional on
treatment = ′′Vehicle′′

3. The estimate in the “treatmentMyriocin” row (b2) is the effect of Myriocin
on area_of_necrosis conditional on area_at_risk = 0. Note the
difference in interpretation with b2 in Model M1. The difference is because
of the interaction. The effect of Myriocin on area_of_necrosis is no
longer constant for all values of area_at_risk. This is easily seen in
Figure 14.6, where the effect of Myriocin (the vertical distance between
the Vehicle and Myriocin line) is very small at small values of area at risk
but very large at large areas at risk.
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4. The estimate in the “treatmentMyriocin + DoxSa” row (b3) is the
effect of Myriocin + DoxSa on area_of_necrosis conditional on
area_at_risk = 0. It’s interpretation is similar to that for b2.

5. The estimate in the “area_at_risk:treatmentMyriocin” row (b4) is the
interaction effect between area at risk and Myriocin. It’s value is the
difference between the slope of the regression line through the Myriocin
points in Figure 14.6 and the slope of the regression line through the
reference (Vehicle) points in Figure 14.6. Consequently, the slope of the
regression line through the Myriocin points is b1 + b4.

6. The estimate in the “area_at_risk:treatmentMyriocin + DoxSa” row (b5)
is the interaction effect between area at risk and Myriocin + DoxSa It’s
value is the difference between the slope of the regression line through the
Myriocin + DoxSa points in Figure 14.6 and the slope of the regression
line through the reference (Vehicle) data in Figure 14.6. Consequently,
the slope of the regression line through the Myriocin + DoxSa points is
b1 + b5.

Interaction effects are differences in slopes (this is also true with interactions
between two factor variables, even though we usually describe this as “differences
in differences”) and these difference are easily seen by inspection of a plot similar
to that in Figure 14.6. The bigger the interaction, the less parallel the regression
line.

14.3.4 What is the effect of a treatment, if interactions
are modeled? – it depends.

A very useful way to remember what an interaction is is “it depends”. What is
the effect of Myriocin on area at risk? With an interaction term in the linear
model, the answer is “it depends”. It depends on the level of area_at_risk. At
small values of area at risk, the effect of Myriocin is very small. At large values
of area at risk, the effect of Myriocin is large. Likewise, what is the effect of
area at risk on necrosis? It depends (if interactions are modeled). It depends on
the level of treatment, for example the effect in the Myriocin group is smaller (a
smaller slope) than the effect in the Vehicle group. “It depends” is the hallmark
of interactions – the effect of one variable on the outcome depends on the level
of a second variable.

14.3.5 Which model do we use, M1 or M2?

The answer to this question depends partly on our goals. If we are explicitly
interested in measuring an interaction effect (perhaps some theory predicts an
positive interaction) then we would necesarily add interaction effects to the
model. But if we are interested in estimating a treatment effect conditional on
a covariate, then we don’t include the interaction. Remember that a purpose
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of initial explorations of data (“Step 2 – examine the data”) is to help decide
which model to specify in the model formula. If an initial plot shows large
interactions between treatment levels and the covariate, then adjusting for the
covariate won’t work, or at least won’t work without additional complexity to
the interpretation. “Large interactions” of course raises the question, how large
is too larege to ignore interactions? Many textbooks in biostatistics recommend
using an interaction p-value to make this decision. I disagree. There is no
objective answer to the question. We lose information with all models – that
is what we do in science. It is up to the researcher to be transparent with all
decisions. If an additive (no interactions) model is used to condition on (adjust
for) a covariate, the researcher should use the supplement to plot the model
with interactions as evidence of why this decision is reasonable.

14.4 Understanding ANCOVA tables

14.5 Working in R

14.5.1 Importing the heart necrosis data

data_folder <- "data"
data_from <- "1-Deoxydihydroceramide causes anoxic death by impairing chaperonin-mediated protein folding"
file_name <- "42255_2019_123_MOESM7_ESM.xlsx"
file_path <- here(data_folder, data_from, file_name)

sheet_i <- "Figure 4h"
fig4h_1 <- read_excel(file_path,

sheet = sheet_i,
range = "A5:B19",
col_names = TRUE) %>%

clean_names() %>%
data.table()

fig4h_2 <- read_excel(file_path,
sheet = sheet_i,
range = "D5:E17",
col_names = TRUE) %>%

clean_names() %>%
data.table()

fig4h_3 <- read_excel(file_path,
sheet = sheet_i,
range = "G5:H15",
col_names = TRUE) %>%

clean_names() %>%
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data.table()

fig4h <- rbind(data.table(treatment = "Vehicle", fig4h_1),
data.table(treatment = "Myriocin", fig4h_2),
data.table(treatment = "Myriocin + DoxSa", fig4h_3))

treatment_levels <- c("Vehicle", "Myriocin", "Myriocin + DoxSa")
fig4h[, treatment := factor(treatment, levels = treatment_levels)]

14.5.2 Fitting the model

For an additive model, add the covariate to the model formula using the +
operator. The order of the variables doesn’t matter (the right-hand-side of the
model formula could be treatment + area_at_risk).

m1 <- lm(area_of_necrosis ~ area_at_risk + treatment, data = fig4h)

For an nonadditive model with interactions, add the covariate to the model
formula using the * operator. ~ area_at_risk * treatment is a short-
cut to the full model formula, which is 1 + area_at_risk + treatment
+ area_at_risk * treatment. R expands the short formula to the full
formula automatically. Again, the order of the variables doesn’t matter (the
right-hand-side of the model formula could be treatment * area_at_risk).

m2 <- lm(area_of_necrosis ~ area_at_risk * treatment, data = fig4h)

14.5.3 ANCOVA tables

If you are going to report statistics from an ANCOVA table, be sure that what
you report is what you think you are reporting – it is very easy to get this wrong
in R. One way to easily get a table using Type II or III sums of squares is to
set the contrast option of the factor variable to contr.sum (this tells R to use
deviation coding to form the model matrix for the linear model) and then use
the function Anova from the car package (not base R anova).

1. It is safest to set this with the lm function itself.
2. The coefficients of the linear model will have a different interpretation

than that given above. Either understand the new interpretation (not
given here) or fit two models, one without the reset contrasts and one
with the reset contrasts.

3. The estimated marginal mean table and the contrast table are the same,
regardless of how contrasts are set in the linear model.
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4. Many websites show code that changes the default coding in the R session.
I strongly caution against this. If you don’t change it back, then you are
likely to misinterpret coefficients in later analyses (see point 2).

For additive models, use Type II sum of squares (Type III will give same results),

Anova(m1_aov, type = 2) # be sure to use the correct model!

## Anova Table (Type II tests)
##
## Response: area_of_necrosis
## Sum Sq Df F value Pr(>F)
## treatment 82.04 2 4.2195 0.02364 *
## area_at_risk 580.25 1 59.6874 8.28e-09 ***
## Residuals 311.09 32
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

For non-additive models with interactions

1. The statistics for the interaction effect are the same, regardless of the sum
of squares used.

2. The interpretation of the main effects is problematic, at best. This is
discussed more in the ANOVA chapter.

3. Some statisticians recommend using Type III sums of squares. The effect
of $treatment* has a very specific interpretation with Type III – it is the
effect when the covariate = 0. This can be biologically relevant if the
covariate data is re-centered.

# for coefficients
m2 <- lm(area_of_necrosis ~ treatment * area_at_risk,

data = fig4h)
# for anova
m2_aov <- lm(area_of_necrosis ~ treatment * area_at_risk,

data = fig4h,
contrasts = list(treatment = contr.sum))

Anova(m2_aov, type = 2) # be sure to use the correct model!

## Anova Table (Type II tests)
##
## Response: area_of_necrosis
## Sum Sq Df F value Pr(>F)
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## treatment 82.04 2 4.3369 0.02216 *
## area_at_risk 580.25 1 61.3485 9.685e-09 ***
## treatment:area_at_risk 27.34 2 1.4453 0.25163
## Residuals 283.75 30
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Anova(m2_aov, type = 3) # be sure to use the correct model!

## Anova Table (Type III tests)
##
## Response: area_of_necrosis
## Sum Sq Df F value Pr(>F)
## (Intercept) 56.06 1 5.9270 0.02107 *
## treatment 12.98 2 0.6863 0.51116
## area_at_risk 491.92 1 52.0087 5.012e-08 ***
## treatment:area_at_risk 27.34 2 1.4453 0.25163
## Residuals 283.75 30
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

14.5.4 Plotting the model

14.5.4.1 Using ggpubr

ggpubr will only plot the model with interactions.

ggscatter(data = fig4h,
x = "area_at_risk",
y = "area_of_necrosis",
color = "treatment",
add = "reg.line",
ylab = "Area of necrosis (mg)",
xlab = "Area at risk (mg)",
palette = pal_okabe_ito

)
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14.5.4.2 ggplot2

m1 <- lm(area_of_necrosis ~ area_at_risk + treatment,
data = fig4h)

gg <- ggplot(fig4h,
aes(x = area_at_risk,

y = area_of_necrosis,
color = treatment)) +

geom_point(aes(color=treatment)) +
geom_smooth(method = "lm",

mapping = aes(y = predict(m1, fig4h))) +
scale_color_manual(values = pal_okabe_ito,

name = NULL) +
ylab("Area of necrosis (mg)") +
xlab("Area at risk (mg)") +
theme_pubr() +
theme(legend.position="bottom") +
NULL

gg
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14.5.4.3 A response-effects plot using ggplot2

m1 <- lm(area_of_necrosis ~ area_at_risk + treatment, data = fig4h)
b <- coef(m1)

groups <- levels(fig4h$treatment)
line_data <- fig4h[, .(min_x = min(area_at_risk),

max_x = max(area_at_risk)), by = treatment]
line_data[, dummy1 := ifelse(treatment == "Myriocin", 1, 0)]
line_data[, dummy2 := ifelse(treatment == "Myriocin + DoxSa", 1, 0)]

line_data[, y_min := b[1] + b[2]*min_x + b[3]*dummy1 + b[4]*dummy2]
line_data[, y_max := b[1] + b[2]*max_x + b[3]*dummy1 + b[4]*dummy2]

gg_response <- ggplot(data = fig4h,
aes(x = area_at_risk,

y = area_of_necrosis,
color = treatment)) +

# points
geom_point(size = 2) +

geom_segment(data = line_data,
aes(x = min_x,

y = y_min,
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xend = max_x,
yend = y_max)) +

scale_color_manual(values = pal_okabe_ito,
name = NULL) +

ylab("Area of necrosis (mg)") +
xlab("Area at risk (mg)") +
theme_pubr() +
theme(legend.position="bottom") +

NULL
#gg_response

m1_emm <- emmeans(m1, specs = "treatment")
m1_pairs <- contrast(m1_emm,

method = "revpairwise",
adjust = "none") %>%

summary(infer = TRUE) %>%
data.table()

# pvalString is from package lazyWeave
m1_pairs[ , p_pretty := pvalString(p.value)]
# also create a column with "p-val: "
m1_pairs[ , pval_pretty := paste("p = ", p_pretty)]

contrast_order <- m1_pairs[, contrast]
m1_pairs[, contrast := factor(contrast, contrast_order)]

gg_effect <- ggplot(data = m1_pairs,
aes(y = contrast,

x = estimate)) +
# confidence level of effect
geom_errorbar(aes(xmin = lower.CL,

xmax = upper.CL),
width = 0,
color = "black") +

# estimate of effect
geom_point(size = 3) +

# draw a line at effect = 0
geom_vline(xintercept = 0, linetype = 2) +

# p-value. The y coordinates are set by eye
annotate(geom = "text",

label = m1_pairs$pval_pretty,
y = 1:3,
x = 4.5) +
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# x-axis label and aesthetics
xlab("Effect (mg)") +
ylab("Contrast") +
coord_cartesian(xlim = c(-8,5.5)) +
scale_x_continuous(position="top") +

theme_pubr() +
# theme(axis.title.x = element_blank()) +

NULL
# gg_effect

gg <- plot_grid(gg_effect,
gg_response,
nrow=2,
align = "v",
axis = "rl",
rel_heights = c(0.35, 1)
)

gg

p =  0.016
p =  0.028
p =  0.98
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14.6 Best practices

14.6.1 Do not use a ratio of part:whole as a response vari-
able – instead add the denominator as a covariate

14.6.2 Do not use change from baseline as a response vari-
able – instead add the baseline measure as a covari-
ate

It is common to measure the outcome variable (Y ) both before and after the
experimental treatments are applied and then compare the pre-post change in
Y in response to the treatment using a t-test or ANOVA using this linear model

Ypost − Ypre = β0 + β1Treatment + ε (14.12)

Don’t do this. Instead, add the pre-treatment measure into the model as a
covariate.

Ypost = β0 + β1Ypre + β2Treatment + ε (14.13)

where Treatment is a dummy variable for a two-level factor. A pre-treatment
measure (Ypre) is often called the baseline measure. The change in Y (∆Y =
Y post − Ypre) is sometimes called a change score or gain score. If you really
want to estimate the treatment effect on the change from pre-treatment value
to post-treatment value, then use model (14.13) with ∆Y as the response – the
p-value will be precisely the same (the estimate and SE will differ of course
because the response variable is different).

The reason why a researcher should not model a change score (∆Y ) as a function
of Treatment without Ypre as a covariate is a phenomenon called regression
to the mean. To explain regression to the mean, I use fake data simulated
to model the results from an important study on gut microbiomes. In this
study, the authors (Turnbaugh et al. xxx) showed that mice with feces from
obese (genotype ob/ob) donors had higher weight gain than mice with feces from
lean (genotype +/+) donors, presumably because of the differences in microbial
communities between the donor types (shown elsewhere in their paper). To
support the inference of a large difference in weight change, they illustrated
the percent change in each treatment level in their Fig 3C, which is replicated
here using simulated data generated to match the original summary statistics
(Figure 14.7).

That looks like a big difference, with the mice from the obese-donor treatment
level gaining much more fat than the mice from the lean-donor treatment level.
Turnbaugh et al. used a simple t-test of this percent change to test the effect of
the ob/ob treatment. The linear model underneath this t-test is
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Figure 14.7: Figure 3c of Turnbaugh et al 2006. This figure was generated with
simulated data matching the summary statistics given in Turnbaugh et al 2006

percent_change_fat = β0 + β1obese + ε (14.14)

where percent_change_fat is the percent change in fat from baseline and obese
is a dummy variable with ob/ob = 1. The percent change in fat is fatpost−fatpre

fatpre
×

100, so is a function of the change score ∆fat = fatpost − fatpre.

The model coefficients are

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 25.24015 5.627515 4.485134 0.0003259533
## treatmentob/ob 21.92156 8.176589 2.681016 0.0157879742

## 2.5 % 97.5 %
## (Intercept) 13.367137 37.11317
## treatmentob/ob 4.670468 39.17266

Or, the increase in fat in the obese-treated mice was 21.9% (95%CI: 4.7, 39.2%,
p = 0.016) greater than the increase in lean-treated mice. This result, if gen-
erally verified with replication and rigorous probing, would have spectacular
implications for human health.
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14.6.3 Regression to the mean in words

Regression to the mean is the phenomenon that if an extreme value is sampled,
the next sample will likely be less extreme. This makes sense, if you randomly
sample a single human male and that individual is 6’10” (about 4 standard
deviations above the mean), the next human you randomly sample will almost
certainly be closer to the mean human male. Or, if you randomly sample five
human males and the mean height in the group is 5’1” (about 3 standard devi-
ations below the mean), the next sample of five human males that you measure
will almost certainly be closer to the mean human male.

How does regression to the mean apply to the analysis of change scores in
a pre-post experiment, like the mouse fecal transplant study? In a pre-post
experiment, subjects are randomized to treatment group. The response is mea-
sured at baseline and again at the conclusion of the experiment. Despite random
treatment assignment, the mean fat weight of the ob/ob group at baseline was
1.2 standard deviations smaller than that of the +/+ group. If there is no
treatment effect, what is the expected difference at the end?

To answer this, we need to know how an individual’s fat weight at the end
is related to its fat weight at baseline. An individual’s final fat is dependent
on its initial fat if factors that contribute to the measurement of fat are the
same at baseline and the end. For example, if an individual has relatively high
metabolism both at baseline and at the end, then that individual might have
relatively low fat at baseline and at the end. This dependence of final value on
baseline value is quantified by the correlation between the two measures. This
correlation is ρ (the greek letter rho). Factors that change over the duration
of the experiment, including random measurement error, cause the correlation
to be less than one. The two extremes of this correlatioun, and the expected
difference in fat weight at the end are:

1. ρ = 0 – if an individual’s final fat is independent of its initial fat then we
expect the difference at end to be zero.

2. ρ = 1 – if an individuals’s final fat is entirely dependent on its initial
fat, then we’d expect the mean fat weight of the ob/ob group to be 1.2
standard deviations smaller than that of the +/+ group, exactly as it was
at baseline.

Regression to the mean happens when ρ < 1 and its consequences increase as ρ
goes to zero. What is meant by “consequences”?

The fat weight of the ob/ob group at baseline is 1.2 standard deviations smaller
than that of the +/+ group. If ρ = 0, then we’d expect the difference between
mean fat weight at the end of the experiment to be zero. Given the starting
differences in mean weight, to get to zero difference at the end, the ob/ob mice
would have to gain more fat weight than the +/+ mice. Since the expectation of
the mean difference at the end is zero the expectation of the change score must
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be bigger for the ob/ob mice than for the +/+ mice. That is the expectation of
the difference in change score is conditional on (or “a function of”) the difference
in fat weight at baseline.

14.6.4 Regression to the mean in pictures

Let’s simulate this to pump our intuition about regression to the mean and its
consequences on pre-post experiments.

1. randomly sample a normal distribution as the “initial weight” and ran-
domly assign to treatment class

2. let the final weight have some correlation (ρ) with the initial weight. Some
correlation should make sense – we expect a mouse that has more fat than
average at the start of the experiment to also have more fat than average
at the end of the experiment. Run the experiment at different values of
this correlation to see how it effects regression to the mean.

3. Do not add a treatment effect. We want to explore the behavior of the
nill null hypothesis.

What’s happening in Figure 14.8? Each point is a result for a single, simulated
experiment. In total, there are 1000 simulated experiments for each of four
values of ρ. The x-axis is the difference between the means of the two treatment
levels at baseline (Initial difference). The y-axis is the difference in mean change
score between the two treatment levels – that is the difference in the means of
∆Y from equation (??). This difference in ∆Y is the effect of the treatment the
researchers are interested in. The unconditional expectation of this difference is
zero

E(∆Yob/ob − ∆Y+/+) = 0 (14.15)

but the change conditional on baseline is not zero

E(∆Yob/ob − ∆Y+/+) ̸= 0 (14.16)

Instead, the conditional expectation is a function of the difference at baseline.
If the initial difference in weight happens to be unusually large and negative,
the expected difference in change score is unusually positive. This non-zero
expectation means that the estimate of the treatment effect is conditionally
biased for any model that does not include the baseline fat weight as a covariate.
And, from a frequentist perspective, the Type I error for a test of a difference
in ∆Y is strongly dependent on the initial difference in weight.

The big X in the plot indicates the difference at baseline and difference in ∆Y
for the original fecal transplant study. The difference in DeltaY is unusually
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Figure 14.8: Effect of initial difference in weight on the difference in change
score. Increased initial difference in weight results in an increased differences in
change score between treatment and control. Four different values of rho (the
correlation between initial and final weights) were simulated. Only when rho=1
is there no influence of initial difference, because whatever differences occur at
baseline will be perfectly preserved in the final measure. The X gives the values
in the original Turnbaugh data
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Figure 14.9: Effect of initial difference in weight on the difference in percent
change. Increased initial difference in weight results in an increased differences
in Percent change between treatment and control. Four different values of rho
(the correlation between initial and final weights) were simulated. Note there
is no value of rho where the difference in percent change is independent of the
initial difference. The X gives the values in the original Turnbaugh data.

positive (about .6% of the |δY | are larger) but very close to the expected value
given the unusually large, negative difference at baseline. In other words, the
probability of the data, or more extreme than the data, is not 0.006 but some-
thing larger and perhaps, much larger (the computed value depends on the
observed ρ. From, the plot, the X is very unusual if ρ = 1, pretty unusual if
ρ = 0.66, but pretty common if ρ = 0.33 or if ρ = 0).

14.6.5 Do not use percent change, believing that percents
account for effects of initial weights

Some researchers mistakenly believe that a t-test of percent change automati-
cally adjusts for effects in initial weight, since this initial weight is in the de-
nominator of the percent. This is wrong. The dependency of the difference in
change between treatments on the initial difference between treatments is more
severe if change is measured as a percent, because the numerator (the change
score) is expected to be larger if the denominator is smaller (initial measure).
Using the simulated data from above, here is this dependency.
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14.6.6 Do not “test for balance” of baseline measures

A test of the null hypothesis of no difference in mean at baseline is a “test
for balance.” Researchers frequently test for balance at baseline and use the
p-value of the test to decide the next step: 1) if p > 0.05, conclude that the
pre-treatment means “do not differ” and use something like a simple t test of the
post-treatment means, 2) if p < 0.05, then use the change score, or the percent
change, as the response in a simple t-test, or 3) if p < 0.05, then use use a
linear model with the pre-treatment value as a covariate. Here, and in general,
hypothesis tests used to decide which of several ways to proceed do not make
sense. First, a null-hypothesis significance test cannot tell you that there is “no
difference” – this is not what null-hypothesis tests do. Second, any p-value after
the initial test isn’t strictly valid as it does not take into account this decision
step, but this is minor. Third, it doesn’t matter; there will always be some
difference in the actual means of the initial measures and, consequently, the
conditional expectation of the final measures, or change in measures, or percent
change will be dependent on this initial difference. So, if one has initial measures,
one should use an linear model that adjusts for baseline measures to estimate
the treatment effect in pre-post designs. And, if one isn’t planning on taking an
initial measure, then maybe you should, because the initial measure used in a
linear model allows a better estimate of the treatment effect, as discussed above
in Adding covariates can increases the precision of the effect of interest.

14.7 Best practices 2: Use a covariate instead of
normalizing a response
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Chapter 15

Two (or more) Categorical
X – Factorial designs

** “ASK1 inhibits browning of white adipose tissue in obesity” ** assess inter-
action by comparing simple effects and concluded incorrectly.

15.1 Factorial experiments

A factorial experiment is one in which there are two or more categorical X
that are crossed, resulting in a group for all combinations of the levels of each
factor. Factorial experiments are used to estimate the interaction between
factors, which occurs when the effect of the level of one factor depends on the
levels of the other factors. For example, a researcher wants to estimate the effect
of an environmental toxin on basal metabolic rate (BMR) in a fish and designs
an experiment with two factors: Treatment with levels “control” and “toxin”
and Sex, with levels “male” and “female”. If the magnitude (and possibly sign)
of the effect of the toxin on BMR differs between males and females, there is an
interaction between Treatment and Sex. Interactions are usually denoted with
a × symbol: Treatment×Sex. Interactions are ubiquitous, although sometimes
they are small enough to ignore with little to no loss of understading.

This chapter uses data from an experiment measuring the effect of Temp and
CO2 on larval sea urchin metabolic rate (Resp) (there are other outcome mea-
sures in the study too). The units of metabolic rate are pmol O2/hr/larva.
There are two Temp levels (13C and 18C) and two CO2 levels (400 µAtm and
1100 µAtm) and the factors are fully crossed, which makes this a 2 × 2 (crossed
or factorial) design. There are n = 6 replicates for each combination of the
levels. A good way to visualize the treatment combinations in a crossed design

383
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is with a m×p table showing all combinations of the m levels of factor 1 (Temp)
against the p levels of factor 2 (CO2)

The upper left cell represents the combination of 13 C and 400 µAtm level
within the CO2 factor. The replicates in this cell were grown with no added
treatments, so this cell is the “control” for Temp and the control for CO2,
which we will use as the “reference” group for the linear model. The replicates
in the lower left cell were grown with an added temperature treatment (in this
case, a 5 C higher temperature). The replicates in the upper right cell were
grown with an added CO2 treatment (700 µATM higher CO2). And finally, the
replicates in the bottom right cell were grown with both the added temperature
(+5 C) and added CO2 (+700 µATM). Here, I use a “+” or “-” to designate the
addition (or not) of the treatment, so our 2×2 treatment levels are Temp-/CO2-,
Temp+/CO2-, Temp-/CO2+ and Temp+/CO2+.

15.1.1 Model coefficients: an interaction effect is what is
leftover after adding the treatment effects to the
control

A factorial design allows a researcher to estimate the interaction between two
factors. To clarify this, let’s fit the factorial model and look at the coefficient
table. The systematic component of the factorial model is

Resp = β0 + β1Temp+ + β2CO2+ + β3Temp+CO2+ (15.1)

Again, Temp+ and CO2+ are dummy variables. The model also includes
Temp+CO2+, which is a dummy variable for the interaction between Temp
and CO2. The value of this interaction dummy variable is literally the product
of the two main factor dummy variables (Temp+ and CO2+), which can be
verified with the model matrix (which here, is computed from the subset of the
data that includeds only the first two rows of each treatment combination)

(Intercept)

Temp+



15.1. FACTORIAL EXPERIMENTS 385

CO2+

Temp+:CO2+

1

0

0

0

1

0

0

0

1

1

0

0

1

1

0

0

1

0

1

0

1

0

1

0

1

1

1

1

1



386CHAPTER 15. TWO (OR MORE) CATEGORICAL X – FACTORIAL DESIGNS

1

1

1

The coefficient table is

Coefficient table of the factorial model

Estimate

Std. Error

t value

Pr(>|t|)

(Intercept)

8.23

0.73

11.3

0.000

Temp+

4.51

1.03

4.4

0.000

CO2+

-0.32

1.03

-0.3

0.761

Temp+:CO2+

-2.68

1.45

-1.9

0.079

1. The Intercept (b0) is the mean (8.23) of the reference (Temp-/CO2-) group,
and so the mean of the upper left cell in Table 1).



15.1. FACTORIAL EXPERIMENTS 387

2. The Temp+ coefficient (b1) is the estimate of the added temperature effect
relative to the reference, and so is the mean of the lower left cell minus
the mean of the upper left cell (b1 = ȲT emp+ − ȲT emp−/CO2−). Another
way of stating this is, it is the effect of Temp when CO2 is at its reference
level.

3. The CO2+ coefficient (b2) is the estimate of the added CO2 effect relative
to the reference, and so is the mean of the upper right cell minus the
mean of the upper left cell (b2 = ȲCO2+ − ȲT emp−/CO2−). Another way of
stating this is, it is the effect of CO2 when Temp is at its reference level.

4. The Temp+:CO2+ coefficient (b3) is the estimate of the interaction ef-
fect, which is the effect in addition to the Temp+ and CO2+ effects. If
you added b1 and b2 to b0, you would get the mean of the Temp+/CO2+

group if the effects were purely additive. So the interaction effect is the
difference between the mean of the bottom right cell and the sum of the
coefficients of the other three cells (b3 = ȲT emp+CO2+ − (b0 + b1 + b2)).
An interaction is a non-additive effect. Think about this. Adding 5
C increases respiration by 4.51 units. Adding 700 µATM CO2 decreases
respiration by .32 units. If these effects were purely additive, then adding
both 5 C and 700 µATM should result in a mean of 8.23 + 4.51 - .32 =
12.42 units for the Temp+/CO2+ group. What is the mean of this group?

9.74! So the difference between the “additive expectation” and the actual mean
is 9.74 − 12.42 = −2.68, which is the interaction effect (coefficient). A graphical
interpretation of these coefficients are in the figure of treatment means below
(figure ??)

15.1.2 What is the biological meaning of an interaction
effect?

I can dead lift 150 pounds and my friend Jake can deadlift 175 pounds. Working
together, we should be able to lift 325 pounds. What if together, we could
actually lift 400 pounds? If this were the case, this would be an interaction
with an effect equal to 75 pounds. Is this biologically plausible? If so, what is
the mechanism? Here is a possible mechanism (although I am highly skeptical
of it having a magnitude of 75 pounds): when lifting an object as part of a
group, the central nervous system allows increased motor unit recruitment, and
so each person can lift more weight than they could if lifting alone. A positive
interaction like this is called synergistic. Always think about the biological
meaning of an interaction effect.
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Figure 15.1: Meaning of coefficients in factorial model. b0 (dashed line) is
the mean of the reference. b1 (length of vector b1) is the mean of the Temp
treatment minus the mean of the reference. b2 (length of vector b2) is the mean
of the CO2 treatment minus the mean of the reference. b3 (length of vector b3)
is the mean of the Temp + CO2 treatment minus what this value would be if
there were no interaction (indicated by the open gold circle)
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15.1.3 The interpretation of the coefficients in a factorial
model is entirely dependent on the reference…

at least using dummy coding of the factor variables, which is the default in R. To
see this, here is the coefficient table of the model but assigning Temp+/CO2+
as the reference (by re-ordering levels in both factors)

Estimate

Std. Error

t value

Pr(>|t|)

(Intercept)

9.74

0.73

13.4

0.000

Temp-

-1.82

1.03

-1.8

0.091

CO2-

3.00

1.03

2.9

0.008

Temp-:CO2-

-2.68

1.45

-1.9

0.079

This dependence of the coefficients on the reference is a feature not a bug.
It is what we mean when we pose the questions “Compared to larvae raised at
today’s temperature, what is the effect of adding 5° Temp on larval respiration?”,
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“Compared to larvae raised at today’s CO2, what is the effect of adding 700
ppm CO2 on larval respiration?”, and “Compared to larvae raised at today’s
temperature and CO2, what is the effect of adding 5° Temp and 700 µAtm
CO2 on larval respiration?” If we change the reference, we are asking different
questions.

15.1.4 Estimated marginal means

The modeled means (or predicted values) of the factorial model (Model (15.1))
fit to the urchin data are shown in the table below. The values in the last column
and row are the marginal means, which are the means of the associated row or
column. More generally, marginal refers to a statistic averaged across multiple
levels of another variable

Marginal means from the full factorial model

Temp

400 µAtm

1100 µAtm

mean

13 C

8.2333

7.9167

8.0750

18 C

12.7433

9.7417

11.2425

mean

10.4883

8.8292

The marginal means with their CIs are

Temp

emmean

SE

df
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lower.CL
upper.CL
13
8.0750
0.5130468
20
7.004803
9.145197
18
11.2425
0.5130468
20
10.172303
12.312697
CO2
emmean
SE
df
lower.CL
upper.CL
400
10.488333
0.5130468
20
9.418136
11.558530
1100
8.829167
0.5130468
20
7.758970
9.899363
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15.1.5 In a factorial model, there are multiple effects of
each factor (simple effects)

With a single factor, there was a single effect for each non-reference level of the
factor. For example, if the levels are “control”, “knockout”, and “rescue”, the
knockout effect is the contrast between knockout and control and the rescue
effect is the contrast between rescue and control. In a factorial experiment with
crossed A and B factors, there are multiple effects of a non-reference level of
factor A – one for each level of factor B. For the urchin experiment, there is
an effect of the 18 C level of Temp when CO2 is 400 µAtm and an effect when
CO2 is 1100 µAtm. Similarly, there is an effect of the 1100 level of CO2 when
Temp is 13 C and when Temp is 18 C. These effects, or contrasts (differences
in modeled means), are sometimes called the simple effects. Another name
could be the “conditional” effects, since the value of the effect is conditional on
the level factor B.

One way to visualize the simple effects is by using the 2 × 2 table of treatment
combinations. The contrasts in the right-side column are the simple effects of
CO2 at each level of Temp. The contrasts in the bottom row are the simple
effects of Temp at each level of CO2. Note that the first simple effect for each
factor has a corresponding row in the table of coefficients of the fit model above.

Conditional (simple) effects of full factorial model fit to urchin data

Temp

400 µAtm

1100 µAtm

simple

13 C

8.2333

7.9167

-0.3167

18 C

12.7433

9.7417

-3.0017

simple

4.5100

1.8250
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The 95% confidence intervals and p-values of the simple effects of the factorial
model (Model (15.1)) are given in the table below.

CO2

Temp

Contrast

Estimate

Lower CI

Upper CI

t

p

400

.

18 - 13

4.5100

2.3696

6.6504

4.3953

0.0003

1100

.

18 - 13

1.8250

-0.3154

3.9654

1.7786

0.0905

.

13

1100 - 400

-0.3167

-2.4571
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1.8237

-0.3086

0.7608

.

18

1100 - 400

-3.0017

-5.1421

-0.8613

-2.9253

0.0084

The first line is the effect of the 18 C level of Temp when CO2 is 400 µAtm.
The 3rd line is the effect of the 1100 µAtm level of CO2 when Temp is 13 C.

15.1.6 Marginal effects

The average of the simple effects for a factor are the marginal effects, or the
main effects in ANOVA terminology.

Temp

400 µAtm

1100 µAtm

simple

marginal

13 C

8.2333

7.9167

-0.3167

18 C

12.7433

9.7417

-3.0017

simple
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4.5100

1.8250

3.1675

marginal

-1.6592

The 95% confidence interval and p-value of these marginal effects are

Contrast

Estimate

Lower CI

Upper CI

t

p

18 - 13

3.1675

1.6540

4.6810

4.3656

0.0003

1100 - 400

-1.6592

-3.1727

-0.1457

-2.2867

0.0332

Marginal effects can be useful for summarizing a general trend, but, like any
average, might not be especially meaningful if there is large heterogeneity of
the simple effects, which occurs when the interaction effect is large. The urchin
example is a good example of marginal effects that would be highly misleading
to present without further comment.
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15.1.7 The additive model

If an interaction effect is small, then it can be useful to estimate the effects of
the two factors as if the interaction were equal to zero.

Resp = β0 + β1Temp+ + β2CO2+ (15.2)

This is a reduced model because one of the terms has been removed from
the model. This particular reduced model is often referred to as the additive
model, since it excludes the interaction term, which is a product of other terms.
The model coefficients of the additive model are given in the table below.

Estimate

Std. Error

t value

Pr(>|t|)

(Intercept)

8.90

0.66

13.4

0.000

Temp+

3.17

0.77

4.1

0.000

CO2+

-1.66

0.77

-2.2

0.042

The conditional effects of the reduced model are

CO2

Temp

Contrast
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Estimate

Lower CI

Upper CI

t

p

400

.

18 - 13

3.1675

1.5739

4.7611

4.1336

0.0005

1100

.

18 - 13

3.1675

1.5739

4.7611

4.1336

0.0005

.

13

1100 - 400

-1.6592

-3.2527

-0.0656

-2.1652

0.0420

.

18
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1100 - 400

-1.6592

-3.2527

-0.0656

-2.1652

0.0420

The table shows that all conditional effects within a factor are the same. This
makes sense – if the model fit is additive, the interaction effect is set to zero
and, consequently there cannot be differences in conditional effects. Probably
a better way of thinking about this is, it doesn’t make sense to compute or
discuss conditional effects in an additive model. Instead, an additive model
automatically computes marginal effects.

Contrast

Estimate

Lower CI

Upper CI

t

p

18 - 13

3.1675

1.5739

4.7611

4.1336

0.0005

1100 - 400

-1.6592

-3.2527

-0.0656

-2.1652

0.0420

Compare the table of marginal effects of the additive model to the table of
marginal effects of the full model. The estimates are the same but the t-values
and p-values differ because of different degrees of freedom (the full model es-
timates one more parameter, the interaction effect). The estimate is the same
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only if the design is balanced, which means that each combination of treatment
levels has the same sample size n.

15.1.8 Reduce models for the right reason

Unless one factor truly has no effect, there will always be an interaction. As
stated above, interactions are ubiquitous. If an interaction is small, it can make
sense to drop the interaction term and re-fit an additive model to estimate
marginal effects in order to present a simplified picture of what is going on,
with the recognition that these estimates are smoothing over the heterogenity
in conditional (simple) effects that truly exist.

Aided and abetted by statistics textbooks for biologists, there is a long history
of researchers dropping an interaction effect because the interaction p > 0.05.
Don’t do this. It doesn’t make any sense.

1. The p-value is an arbitrary dichotomization of a continuous variable.
Would it make sense to behave differently if the interaction were p = 0.051
vs. p = 0.049, given that these two p-values are effectively identical?

2. A p-value is not evidence that an effect is zero, or “doesn’t exist”, or even
that an effect is “trivially small”. This is because p-values are a function of
measurement error, sampling error, and sample size, in addition to effect
size.

15.1.9 What about models with more than two factors?

A factorial model can have more than two factors, for example, a model with
three factors (A, B, and C), each with two levels (which I’ll designate with a
“+”), is

Y = β0+β1A++β1B++β3C++β4A+B++β5A+C++β6B+C++β7A+B+C++ε
(15.3)

It is easy enough to get an ANOVA table with p-values for this model but I
don’t recommend it because

1. If space and/or time and/or materials are limited then it typically makes
more sense to prioritize the power to estimate standard errors by choosing
one of the two-factor models and increasing sample size

2. Interaction effects in 2-factor models are hard enough to interpret. A 3-
way interaction is very, very tough to interpret. If all we did was table up
F -ratios and p-values, this wouldn’t matter. But it does matter.
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15.2 Reporting results

15.2.1 Text results

The effect of the increased temperature at the control CO2 level was 4.5 pmol
O2/hr/larva (95% CI: 2.4, 6.7; p < 0.001). The effect of increased CO2 at the
control temperature was -0.3 pmol O2/hr/larva (95% CI: -2.4, 1.8; p = .76).
The interaction effect was -2.7 pmol O2/hr/larva (95% CI: -5.7, 0.3; p = 0.079).
Because of the relatively large interaction, the effect of temperature at the high
level of CO2 was less than half the effect at the low level of CO2 (estimate: 1.82;
95% CI: -0.3, 4.0; p = 0.091) and the effect of CO2 at the high level of Temp
was 10 times greater than that at the low level of Temp (estimate: -3.0; 95%
CI: -5.1, -.9; p = 0.0084).

The CI on the interaction includes both large negative values and trivially small
values, including zero, and, consequently, our data is compatible with both
scientific models (that is, we can neither support nor reject the predictions of
the scientific model using these results).

15.3 Working in R

15.3.1 Model formula

A full-factorial model with two factors is specified in the model formula as y
~ A*B where A is the first factor, and B is the second factor. The * indicates
to cross A and B. R expands this formula to y ~ 1 + A + B + A:B where the
colon indicates an interaction (multiplicative) effect.

m1 <- lm(Resp ~ Temp*CO2, data=urchin) # use urchin1 data with relabeled levels
coef(summary(m1))

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.2333333 0.7255577 11.3475922 3.626935e-10
## Temp18 4.5100000 1.0260936 4.3953106 2.792573e-04
## CO21100 -0.3166667 1.0260936 -0.3086138 7.608069e-01
## Temp18:CO21100 -2.6850000 1.4511155 -1.8503007 7.910035e-02

The additive model is specified by the formula y ~ A + B

m2 <- lm(Resp ~ Temp + CO2, data=urchin) # use urchin1 data with relabeled levels
coef(summary(m2))
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## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.904583 0.6636207 13.418183 9.038657e-12
## Temp18 3.167500 0.7662831 4.133590 4.721000e-04
## CO21100 -1.659167 0.7662831 -2.165214 4.203445e-02

15.3.2 Modeled means

Modeled means are estimated using emmeans::emmeans. The means for all
combinations of Temp and CO2 are obtained with the specs argument.

m1.emm <- emmeans(m1, specs=c("Temp", "CO2"))
m1.emm

## Temp CO2 emmean SE df lower.CL upper.CL
## 13 400 8.23 0.726 20 6.72 9.75
## 18 400 12.74 0.726 20 11.23 14.26
## 13 1100 7.92 0.726 20 6.40 9.43
## 18 1100 9.74 0.726 20 8.23 11.26
##
## Confidence level used: 0.95

15.3.3 Marginal means

The marginal means are

m1.emm.temp <- emmeans(m1, specs=c("Temp"))
m1.emm.co2 <- emmeans(m1, specs=c("CO2"))
m1.emm.temp

## Temp emmean SE df lower.CL upper.CL
## 13 8.07 0.513 20 7.0 9.15
## 18 11.24 0.513 20 10.2 12.31
##
## Results are averaged over the levels of: CO2
## Confidence level used: 0.95

m1.emm.co2

## CO2 emmean SE df lower.CL upper.CL
## 400 10.49 0.513 20 9.42 11.6
## 1100 8.83 0.513 20 7.76 9.9
##
## Results are averaged over the levels of: Temp
## Confidence level used: 0.95
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15.3.4 Contrasts

All six pairwise contrasts are computed using emmeans::contrast. The adjust
argument specifies the adjustment for multiple testing. The method argument
specifies the type of contrast (pairwise and revpairwise give all pairwise con-
trasts. revpairwise simply gives the reverse of pairwise)

m1.contrast <- contrast(m1.emm, adjust="none", method="revpairwise")
# add CIs
m1.contrast.ci <- summary(m1.contrast, infer=c(TRUE, TRUE))
m1.contrast.ci

## contrast estimate SE df lower.CL upper.CL t.ratio p.value
## 18,400 - 13,400 4.510 1.03 20 2.370 6.650 4.395 0.0003
## 13,1100 - 13,400 -0.317 1.03 20 -2.457 1.824 -0.309 0.7608
## 13,1100 - 18,400 -4.827 1.03 20 -6.967 -2.686 -4.704 0.0001
## 18,1100 - 13,400 1.508 1.03 20 -0.632 3.649 1.470 0.1571
## 18,1100 - 18,400 -3.002 1.03 20 -5.142 -0.861 -2.925 0.0084
## 18,1100 - 13,1100 1.825 1.03 20 -0.315 3.965 1.779 0.0905
##
## Confidence level used: 0.95

15.3.5 Simple effects

The four conditional (simple) effects are a subset of the contrasts above and are
computed using the arguments simple="each" and combine=TRUE.

m1.effects <- summary(contrast(m1.emm,
method="revpairwise",
adjust="none",
simple = "each",
combine=TRUE),

infer=c(TRUE,TRUE))
m1.effects

## CO2 Temp contrast estimate SE df lower.CL upper.CL t.ratio p.value
## 400 . 18 - 13 4.510 1.03 20 2.370 6.650 4.395 0.0003
## 1100 . 18 - 13 1.825 1.03 20 -0.315 3.965 1.779 0.0905
## . 13 1100 - 400 -0.317 1.03 20 -2.457 1.824 -0.309 0.7608
## . 18 1100 - 400 -3.002 1.03 20 -5.142 -0.861 -2.925 0.0084
##
## Confidence level used: 0.95
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15.3.6 Marginal effects

The marginal effects of the factorial model are

m1.emm.1 <- emmeans(m1, specs=c("Temp"))
m1.effects.1 <- summary(contrast(m1.emm.1,

method="revpairwise",
adjust="none"),

infer=c(TRUE,TRUE))
m1.effects.1

## contrast estimate SE df lower.CL upper.CL t.ratio p.value
## 18 - 13 3.17 0.726 20 1.65 4.68 4.366 0.0003
##
## Results are averaged over the levels of: CO2
## Confidence level used: 0.95

m1.emm.2 <- emmeans(m1, specs=c("CO2"))
m1.effects.2 <- summary(contrast(m1.emm.2,

method="revpairwise",
adjust="none"),

infer=c(TRUE,TRUE))
m1.effects.2

## contrast estimate SE df lower.CL upper.CL t.ratio p.value
## 1100 - 400 -1.66 0.726 20 -3.17 -0.146 -2.287 0.0332
##
## Results are averaged over the levels of: Temp
## Confidence level used: 0.95

These can be combined into a single table using rbind

m1.effects.marginal <- rbind(data.table(m1.effects.1), data.table(m1.effects.2))
m1.effects.marginal

## contrast estimate SE df lower.CL upper.CL t.ratio
## 1: 18 - 13 3.167500 0.7255577 20 1.654013 4.6809869 4.365607
## 2: 1100 - 400 -1.659167 0.7255577 20 -3.172654 -0.1456798 -2.286747
## p.value
## 1: 0.0002993051
## 2: 0.0332473272
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15.3.7 Plotting results

15.3.7.1 Bar plot with uniform coloring poorly communicate the fac-
torial design

# bar plot with uniform color
urchin[, xlabel := paste0("Temp:",Temp,"/","CO2:",CO2)]
ggbarplot(x="xlabel",

y="Resp",
data=urchin[!is.na(Resp),],
add=c("mean_ci", "jitter"),
fill=(pal_jco("default")(4))[1]) +

xlab("Treatment") +
NULL
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15.3.7.2 Plots that communicate the factorial design

# bar-plot with 2nd factor different color
pd <- position_dodge(0.7)
gg1 <- ggbarplot(x="Temp",

y="Resp",
fill="CO2",
data=urchin[!is.na(Resp),],
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add=c("mean_ci"),
position=pd) +

geom_point(aes(fill=CO2),
color="black",
position=position_jitterdodge(jitter.width=0.2),
show.legend=FALSE,
alpha=0.5) +

scale_fill_jco() +
NULL

# "interaction" plot
m1.emm.dt <- data.table(summary(m1.emm))
pd = position_dodge(0.7)
gg2 <- ggplot(data=m1.emm.dt,

aes(x=Temp,
y=emmean,
shape=CO2,
color=CO2,
group=CO2)) +

geom_point(position=pd, size=3) +
geom_errorbar(aes(x=Temp,

ymin=lower.CL,
ymax=upper.CL,
group=CO2)

, position=pd, width=0.1) +
geom_line(position=pd) +
ylab("Resp") +
scale_color_jco() +
theme_pubr() +
#theme(legend.position="bottom") +
NULL

# interaction "jitter" plot
gg3 <- gg2 +
geom_point(data=urchin[!is.na(Resp),], aes(x=Temp, y=Resp, fill=CO2),

position=position_jitterdodge(jitter.width=0.2)) +
# position=position_jitter(width=0.2)) +
theme(legend.position="bottom") +
NULL

gg_response <- gg3 # used below

# box "interaction" plot
m1.emm.dt <- data.table(summary(m1.emm))
pd <- position_dodge(0.8)
gg4 <- ggboxplot(x="Temp",
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y="Resp",
data=urchin[!is.na(Resp),],
fill="CO2") +

scale_fill_jco() +
geom_point(data=m1.emm.dt,

aes(x=Temp, y=emmean, group=CO2),
color="red",
position=pd) +

geom_line(data=m1.emm.dt,
aes(x=Temp, y=emmean, group=CO2),
position=pd) +

theme(legend.position="bottom") +
NULL

plot_grid(gg1, gg2, gg3, gg4, nrow=2, labels="AUTO")

A common way to plot the results of factorial models is with an interaction
plot (Figure 15.2). In the interaction plot of the urchin data, the X-axis con-
tains the two Temp treatment levels and the Y -axis is the outcome (Resp).
The plot shows the four cell means indicated by the circles (low CO2 levels) or
triangles (high CO2 levels). The solid lines connect the cell means across Temp
levels within CO2 levels.

1. The slope of a line is the effect of Temp on Resp
2. The relative elevation of the two lines is the effect of CO2 on Resp
3. The difference in slope or the relative elevation at each level of Temp is

the interaction effect

Let’s deconstruct this. The top (CO2-) line is the effect of Temp at the control
(400 µATM) value of CO2. The slope of the bottom (CO2+) line is the effect
of Temp at the high (1100 µATM) value of CO2. These lines have different
slopes, or the slope is conditional on the level of CO2. This means that the
effect of Temp on respiration is conditional on the value of CO2. Think about
this. This is what an interaction implies–conditional effects.

At the reference temperature (13 C), the CO2+ line is barely below the CO2-
line. But at the high temperature (18 C), the CO2+ line is far below the CO2-
line. That is, the relative elevation (the CO2 effect) is conditional on the level
of Temp. It will always be the case that if the effect of Factor A is conditional
on the levels of Factor B, then the effect of Factor B will be conditional on the
levels of Factor A.

An interaction plot is an okay plot. It doesn’t show the data, only a minimal,
descriptive summary (means and standard errors). If we are interested in the
interaction effect, it doesn’t give us a very good sense of the error in this effect.
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Figure 15.2: Interaction plots. (B) is the classic interaction plot, which is char-
acterized by lines connecting the groups that share the same Factor B level.
This line allows one to visual the effect of Factor A (the slope) at each level of
Factor B.
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And that is a problem because with real data, two lines are never precisely
parallel. Our interpretation of the similarity of the slopes would probably mostly
reflect our pre-conceived scientific model.

15.3.7.3 Effects plots

# need m1.emm and m1.effects from above
# convert to data.table
m1.coefs <- coef(summary(m1))
m1.ci <- confint(m1)
m1.coefs.dt <- data.table(Term=row.names(m1.coefs), m1.coefs, m1.ci)
# convert labels to match those of m1.effects
setnames(m1.coefs.dt,

old=c("Estimate", "Std. Error", "Pr(>|t|)", "2.5 %", "97.5 %"),
new=c("estimate", "SE", "p.value", "lower.CL", "upper.CL"))

m1.contrasts.dt <- data.table(m1.effects)
# create a label for each contrast
m1.contrasts.dt[, Term:=ifelse(CO2!=".",

paste0(CO2, ":", contrast),
paste0(Temp, ":", contrast))]

m1.effects.dt <- rbind(m1.coefs.dt[4,], m1.contrasts.dt, fill=TRUE)

# effects plot
# get p-values
pval <- as.character(round(m1.effects.dt$p.value, 3))
pval[2] <- "0.0003"
gg_effects <- ggdotplot(x="Term",

y="estimate",
data=m1.effects.dt,
color = (pal_jco("default")(4))[1],
fill = (pal_jco("default")(4))[1],
size=0.5) +

geom_errorbar(aes(x=Term, ymin=lower.CL, ymax=upper.CL),
width=0.15, color=(pal_jco("default")(4))[1]) +

ylab("Contrast") +
geom_hline(yintercept=0, linetype = 2) +
annotate("text", x = 1:5, y = rep(7.75, 5), label = pval) +
annotate("text", x=5.4, y=7.75, label="p-value") +
expand_limits(y = 8.3) +
xlab("Contrast") +
coord_flip() +
NULL

gg_effects
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This effects plot shows the four simple effects, the single interaction
(Temp18:CO21100), and their 95% confidence intervals. In the original
paper, the researchers were testing a scientific (not statistical!) model that pre-
dicted no interaction between CO2 and Temp, and the researchers argued that
these data supported this model because of the “not statistically significant”
p-value for the interaction effect. The data are consistent with this model (one
end of the 95% CI for the interaction includes zero) but also support a model
of a large, negative interaction (the other end of the 95% CI includes large
negative values). The data are too course (or the signal:noise ratio is to small)
to have much confidence in the size of the interaction effect.

15.3.7.4 Harrell plots

gg_effects <- gg_effects + scale_y_continuous(position="right")

plot_grid(gg_effects, gg_response, nrow=2,
align = "v",
rel_heights = c(1, 1.75))
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The effects and interaction plot are combined into a single plot.

15.4 Problems

1. Draw four 2 × 2 tables and label the row and column headers using the
levels of the urchin treatment. In the first table, insert the cell means. In
the 2nd table, insert the equation for the coefficient. In the third table,
solve the equations. And in the fourth column, insert the estimates from
the table above. Are tables 3 and 4 the same? If not, you’ve goofed
somewhere.
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2. Frew et al. (2017) showed that increasing atomospheric CO2 increases
grub activity in the soil which in turn increases root damage to sugarcane.
They used a 2 x 2 experiment to then show that silicon added to the soild
decreased the damage to the roots by the grubs (silicon minerals are very
hard and plants uptake silicon from the soil to mineralize tissues to protect
against insect damage). There are lots of analyses in the paper – try to
reproduce Fig. 4b, but using an interaction plot.

(The treatment assignments are in a different file than the experimental results.
Use the merge function to glue the two tables together, keying on the common
column “plant”)

1. file name: “canegrub_feedingtrial.csv”
2. file name: “treatments.csv”
3. source: https://datadryad.org/resource/doi:10.5061/dryad.r3s16

3. Kardol et al investigated the effect of moss growth in response to rain-
fall and community structure. Analyze the effect of these two factors on
biomass gain and generate a Harrell plot alternative to their bar plot in
Fig. 3 (see below). What is striking about your plot compared to theirs?

https://datadryad.org/resource/doi:10.5061/dryad.r3s16
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Filename “Data file for Dryad.xlsx” sheet “Data” **Source*:** https:
//datadryad.org/resource/doi:10.5061/dryad.66d5f

4. (Grad students only) Generate a fake experiment! The experiment should
have two factors each with two levels. Experiment with power by varying
sample size and effect size.

https://datadryad.org/resource/doi:10.5061/dryad.66d5f
https://datadryad.org/resource/doi:10.5061/dryad.66d5f


Chapter 16

ANOVA Tables

Treatment effects are most often analyzed using ANOVA, which is short for
“Analysis of Variance”. This is somewhat of an odd name for a method to test
for treatments effects - what do differences in means have to do with an analyis
of variance? The name makes sense in light of the decomposition of the total
variance into a model variance and the residual variance (chapter xxx). If there
are differences among the means, then the total variance is increased because
of variation among groups.

The engine underneath modern ANOVA is a linear model. If the model has a
single categorical factor, the ANOVA is one-way. If the model has two categor-
ical factors it is a two-way ANOVA. If the model has a single categorical factor
and one continuous factor it is an ANCOVA, short for analysis of covariance
(next chapter). More complex experimental designs classically analyzed with
ANOVA are nested, split-plot, latin-square, and many others.

16.1 Summary of usage

If you choose to report an ANOVA, also report the effects and their uncertainty
in some way, either the model coefficients or contrasts.

1. ANOVA generates a table with one row for each term in the linear model.
A term is a factor or a covariate or an interaction. For a two-way factorial
ANOVA, these terms are the two main effects and the interaction effect.

2. The ANOVA generates an F and p-value for the whole model and for each
term in the ANOVA table.

3. The p-value of an interaction term is often used as a decision rule to
interpret the main effects. If p ≤ 0.05 then do not interpret the main
effects but instead examine the condition (“simple”) effects. If p > 0.05,

413
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then interpret the main effects. Regardless, this sort of decision rule is
itself controversial, and for good reason.

4. If the main effects are to be interpreted, some statisticians advocate re-
fitting the model without the interaction effect, others advocate interpret-
ing the main effects with the interaction term in the model. This only
matters if the design is unbalanced (see below).

5. Regardles of any decision, always plot the data using a Harrell plot or in-
teraction plot to understand and communicate the magnitude and pattern
of interaction.

6. For factors with more than two levels, the p-value is often used as a decision
rule to dissect the factor with post-hoc tests, such as Tukey HSD.

7. A design is balanced if all the cells have the same number of replicates. A
design is unbalanced if one or more of the cells has a different number of
replicates. Unbalanced designs make it necessary to make decisions, none
of which are perfect, and all of which are controversial. Some statisticians
have even advocated randomly excluding data until the design is back in
balance. Don’t do this.

8. There are multiple ways to decompose the sum of squares. I highlight the
major three: Type I (sequential), Type II (partial sequential), and Type
III. Most statistics software and introductory statistics books default to
Type III and, consequently, many researchers are unaware that Types I
and II exist. R’s default is Type I, and this can make a difference if the
design is unbalanced. This is not a rare error in publications.

9. Because R defaults to Type I sum of squares, the p-value of a factor
depends on the order of the factors in the model if the design is unbalanced.
This is a feature, not a bug.

10. ANOVA based on type II sum of squares do not depend on factor order if
the design is unbalanced, but it does assume that the interaction is zero.

11. ANOVA based on type III sum of squares do not depend on order if the
design is unbalanced and does not assume the interaction is zero.

12. If the design is balanced, Type I, II, and III sum of squares generate the
same ANOVA table. And the ANOVA table of just the main effects is
the same as the ANOVA table that includes the interaction term. None
of this is true when the design is unbalanced, However, the decision to use
type II or type III is very controversial.

16.2 Example: a one-way ANOVA using the
vole data

The vole data has a single factor (“treatment”) with three levels (“control”,
“vitamin_E”, “vitamin_C”). In statistics textbooks that emphasize hypothesis
testing, the “Which test should I use” flowchart would guide a researcher given
this design to a single classification, or one-way ANOVA, since a t-test can only
compare two levels but an ANOVA can compare more than two levels. There
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are better ways to think about what ANOVA is doing, but okay.
Here is an ANOVA table of the vole data:
Df
Sum Sq
Mean Sq
F value
Pr(>F)
treatment
2
248446
124223.0
2.95
0.057
Residuals
93
3912751
42072.6
I’ll explain all the parts of the ANOVA table later, but for now, focus on the p-
value, which is that most researchers want out of the table. What null hypothesis
does this p-value test? The p-value gives the probability of the observed F
or larger F , if the null were true. The null hypothesis models the data as if
they were sampled from a single, normal distribution and randomly assigned
to different groups. Thus the null hypotheis includes the equality of the means
among factor levels. In the vole data, the single treatment factor has three levels
and a small p-value could occur because of a difference in means between the
vitamin_E treatment and control, or between the vitamin_C treatment and
control, or between the two vitamin treatments. The p-value or ANOVA table
doesn’t indicate what is different, only that the observed F is unexpectedly
large if the null were true. As a consequence, researchers typically interpret
a low p-value in an ANOVA table as evidence of “an effect” of the term but
have to use additional tools to dissect this effect. The typical additional tools
are either planned comparisons, which are contrasts among a subset of a
priori identified treatment levels (or groups of levels) or unplanned comparisons
(“post-hoc” tests) among all pairs of levels.
The p-value in the ANOVA table acts as a decision rule: if p < 0.05 then it is
okay to further dissect the factor with planned comparisons or post-hoc tests
because the significant p “protects” the type I error of further comparisons. I’m
not fond of using p-values for these sorts of decision rules.
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16.3 Example: a two-way ANOVA using the
urchin data

Let’s use the urchin data from the previous chapter xxx to explore the ANOVA
table, which is what is typically reported. The experiment has two factors
(Temp and CO2), each with two levels. Here is the linear model

Resp = β0 + β1Temp + β2CO2 + β3TempCO2 + ε (16.1)

In order to understand factorial ANOVA (or any ANOVA with multiple factors),
it is useful to know the difference between conditional means and marginal
means

## CO2- CO2+ Temp-mm
## Temp- 8.233 7.917 8.075
## Temp+ 12.743 9.742 11.243
## CO2-mm 10.488 8.829 9.659

In the table above, the upper, left 2 × 2 grid of cells are the conditional means,
which are the means of each group, where a group is a specific combination
of factor levels. The first two values of the third row are the marginal means
for CO2. The first (10.488) is the mean of the two means when CO2=CO2-.
This can be written as E(Resp|CO2−). The second (8.829) is the mean of the
two means when CO2=CO2+, or E(Resp|CO2+). The first two elements of
the third column are the marginal means for Temp. These are E(Resp|Temp−)
and E(Resp|Temp+). The bottom right value (9.659) is the grand mean.

A conditional effect is a difference between conditional means. For example
the conditional effect of Temp conditional on CO2=CO2- is 12.743 − 8.233. A
marginal effect is a difference in marginal means within a factor, for example
the marginal effect of Temp is 11.243 − 8.075.

Here is the ANOVA table of the urchin data

Df

Sum Sq

Mean Sq

F value

Pr(>F)

Temp

1

60.2
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60.2

19.1

0.0003

CO2

1

16.5

16.5

5.2

0.0332

Temp:CO2

1

10.8

10.8

3.4

0.0791

Residuals

20

63.2

3.2

This ANOVA table uses what are called Type 3 sum of squares, which is NOT
the default in R but is the default in many other statistics software and is,
therefore, the only type of ANOVA that many researchers know (and, many
researchers are unaware that there are multiple types of ANOVA table). Un-
derstanding these differences is important, at least if one is reporting ANOVA
tables. I’ll return to the importance of this later.

16.3.1 How to read an ANOVA table

An ANOVA table has a row for each term in the underlying linear model – each
of these adds a component of variance to the total, and a row for the residual
variance (this residual variance row is frequently excluded from the published
table). The urchin model has three terms (one level of Temp, one level of CO2,
and one interaction). The statistics for each term are
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1. Degrees of Freedom (df) – If the term is a factor, the df will equal the
number of levels (k) for the factor minus 1. Think of it this way: the
contribution of the variance due to a factor is a function of the variabil-
ity of the k level means around the grand mean. How many degrees of
independent variation do these level means have, given that we know the
grand mean? The answer is k − 1 – once the values of k − 1 level means
are written down, the kth level mean has no freedom to vary; its value
has to be k ¯̄Y −

∑k−1
i Yi. For an interaction term, the df is the product of

the df of each of the factors in the interaction.
2. Sum of Squares – the sum of squared differences between the modeled

value and the grand mean. In addition to a sum of squares for each term,
a residual mean square is computed as the sum of squared differences
between the measured and modeled values.

3. Mean Square – The sum of squares divided by the df (this is a “mean”
with df acting as the number of things that were summed).

4. F-ratio – the Mean Square of the term dived by the residual mean square.
5. p-value – the p-value for the F-ratio. F is compared to an F-distribution,

which is a distribution of F-ratios under the null.

16.3.1.1 Each row in the table tests a null hypothesis

The row for each term in an ANOVA table tests a null hypothesis. In order to
understand the null hypotheses, I need to define a few more terms

For the ANOVA table above, which uses Type 3 sum of squares, the probabilities
are

1. Temp – p = prob(F ≥ Fo|CO2, T emp : CO2). The null is no difference
in means conditional on the level of CO2 and Temp:CO2. This is equiv-
alent to no difference between the grand mean and the marginal mean of
Temp+, or

b1 = Resp − E(Resp|Temp+) (16.2)

2. CO2– p = prob(F ≥ Fo|Temp, Temp : CO2). The null is no difference in
means conditional on the level of Temp and Temp:CO2. This is equivalent
to no difference between the grand mean and the marginal mean of CO2+,
or

b2 = Resp − E(Resp|CO2+) (16.3)



16.3. EXAMPLE: A TWO-WAY ANOVA USING THE URCHIN DATA 419

3. Temp:CO2 – p = prob(F ≥ Fo|Temp, CO2). The null is no difference
in means conditional on the level of Temp and CO2. This is equivalent
to the difference between the conditional mean of Temp+/CO2+ and the
expected conditional mean of Temp+/CO2+ if there were no interaction.

b3 = E(Resp|Temp+, CO2+) − (Resp − b1 − b2) (16.4)

As noted in the equations, these three differences are the coefficients of the
linear model behind the ANOVA. Here is the coefficient table

Estimate

Std. Error

t value

Pr(>|t|)

(Intercept)

9.66

0.36

26.6

0.00000

Temp1

-1.58

0.36

-4.4

0.00030

CO21

0.83

0.36

2.3

0.03325

Temp1:CO21

-0.67

0.36

-1.9

0.07910
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In ANOVA with type 3 sum of squares, the dummy variables are coded using
effect coding, which differs from the dummy coding introduced in chapter xxx.
The consequence is that the grand mean (the mean of Resp across all values)
is now the “reference” value. The intercept in this table, then, is the grand
mean. The coefficients are differences from the grand mean, as described above.

Use the table of conditional and marginal effects above to check that the coef-
ficients equal the differences in the equations above. Also not that the p-values
for the effects in the coefficient table equals the p-values in the ANOVA table.

It is important to note that this table differs from the coefficient table with
dummy coding because that reference is the mean of Temp-/CO2- and not the
grand mean.

Estimate

Std. Error

t value

Pr(>|t|)

(Intercept)

8.23

0.73

11.3

0.00000

TempTemp+

4.51

1.03

4.4

0.00028

CO2CO2+

-0.32

1.03

-0.3

0.76081

TempTemp+:CO2CO2+

-2.68

1.45

-1.9
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0.07910

Importantly, note that p-values for b1 (the Temp effect) and b2 differ between
the two tables. This is because the t-value tests different hypotheses! In the
coefficient table with effect coding (that behind the ANOVA with type 3 sums of
squares), the p-value tests marginal effects and so is a function of both marginal
means within a factor. By contrast, in the coefficient table with dummy coding,
the p-value tests conditional effects, and so is only a function of the conditional
means when the other factor is at its reference level (right? The coefficient
b1 in the dummy coded coefficient table is the effect of only increasing Temp
– CO2 is left at its reference level). For the interaction effect, the coefficient
differs between the effects coded model and the dummy coded model (because
different reference means) but the p-value ultimately tests the same hypothesis
(non-additive effects of the factors) and so the t and p values are the same.

16.3.1.2 What to do after ANOVA?

Researchers frequently report ANOVA statistics (F and p values) for factorial
models in a way that suggests that they misunderstand the hypotheses tested.
It probably doesn’t help that there is a long-standing debate among statisticians
about the most sensible strategy for interpreting factorial ANOVA results. And
it doesn’t help that the default ANOVA table in R can suggest a very different
interpretation than the default ANOVA table in some other software packages.

Here are three strategies for interpreting a factorial ANOVA table that uses
Type III sum of squares. All strategies use p-values to make a series of decision
rules. In the first strategy, which is a type of model simplification or model
selection, a researcher starts with the interactions at the bottom of the ANOVA
table and works up, eliminating terms with p > 0.05 and re-fitting the reduced
model before interpreting main effects. In the second strategy, the researcher
uses the original ANOVA table that includes all terms to interpret main effects.

Strategy 1

1. is interaction p < 0.05?

a. if yes, then do NOT test main effects. Show a graph to show pattern
of conditional effects. Test conditional effects if this is of interest.

b. if no, then refit model without the interaction and test main effects
– This now is equivalent to ANOVA using Type II sum of squares.
2. is main effect p < 0.05$?

a. if yes, then keep in model
b. if no, then refit model without that main effect

Strategy 2
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2. is interaction p < 0.05?

a. if yes, then do NOT test main effects. Show a graph to show pattern
of conditional effects. Test conditional effects if this is of interest.

b. if no, then use the same table as the test of the main effects. This is
interpreting the main effects with the interaction term in the model.
This is the logic of ANOVA using type III sum of squares.

Strategy 3

3. is interaction p < 0.05?

a. if yes, then look at interaction plot to determine if it makes sense test
main effects. For example, if CO2+ had obviously lower Resp at both
levels of Temp, even if one was much lower (ie. interactaction), then
some people would say that the test of the main effect is meaningful.
Test conditional effects if this is of interest.

b. if no, then use the same table as the test of the main effects

In general, statisticians advise against strategy 3 (interpreting main effects in
the presence of interaction) – its not wrong, its just that a main effect has an
awkward interpretation if there is an interaction. Of course this is true if there is
any interaction term in the model, not just a statistically significant term. The
controversy is more, if the interaction p is not significant, then do we implement
stategy 1 (refit model excluding interaction to test main effects) or strategy 2
(use full factorial anova table to test main effects).

Df

Sum Sq

Mean Sq

F value

Pr(>F)

Temp

1

45.2

45.2

14.5

0.0011

CO2

1
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4.1

4.1

1.3

0.2630

Temp:CO2

1

14.8

14.8

4.8

0.0413

then one shouldn’t report the ANOVA results using something like “Tempera-
ture had a significant effect on metabolism (F1,20 = 14.5, p = 0.001). There was
no effect of CO2 on metabolism (F1,20 = 4.1, p = 0.26)”. There was a significant
interaction effect between Temperature and CO2 on metabolism (F1,20 = 14.8,
p = 0.04)”. If one accepts that the small interaction p-value is evidence of an
interaction effect then this interpretation of the main factors makes no sense,
as the first two results imply that the interaction effect is zero (or, that there is
a constant effect of Temp or CO2 across both levels of the other factor), which
is then contradicted by the third result.

More specifically, if one is using a p-value to guide decision making, then a
significant interaction p indicates that there is no single “main” effect of a factor.
Instead, the effect of Temp is conditional on the level of CO2, and the effect of
CO2 is conditional on the level of Temp. This is easily seen in the interaction
plot, where the effect of Temp is large when CO2 is high but much smaller when
CO2 is low. Indeed, the effect of Temp at the low CO2 is 0.16.

Instead of interpreting the factors as constant effects, A better strategy is to
compare the conditional effects, that is, the effects of Temp within each level
of CO2 and the effects of CO2 within each level of Temp (conditional effects
are sometimes called the “simple effects”).

The controversy arises in what to do after an ANOVA if the interaction effect
has a non-significant p-value. At this point, I am punting instead of explaining
the basis for the controversy, because ultimately I think the major problem with
both strategies is the use of null hypothesis significance testing to make analysis
decisions.

In fact, the entire reason that I use the urchin data as the example for factorial
ANOVA is because it beautifully illustrates the absurdity of the interaction p-
value decision rule. Why should we interpret the results of the ANOVA when the
interaction p is 0.079 differently than when the interaction p is 0.04? Remember,
the p-value is a “sample” statistic (in the sense that it is entirely a function of
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Figure 16.1: Forest plots (the upper part of a Harrell plot) of the actual and
fake urchin data. A) Real urchin data. The interaction effect is not significant
(p = 0.079). B) Fake urchin data. The interaction effect is significant (p = 0.04).

the sampled data) and in conditions of low power (which is likely, but not
necessarily, true for the urchin data given n=6), a p-value is highly variable.

There are several problems with this approach. 1) a p-value is not evidence of
“no effect”, 2) the power to test interaction effects is small relative to that for
the main effects (this is a general rule, not something specific to these data), 3)
the interaction SS accounts for about 7.2% of the total SS, which doesn’t seem
inconsequential, and 4) the interaction p-value is small enough to raise a red
flag, and, most importantly, 5) the confidence interval of the interaction effect
indicates that the large, negative values of the interaction are as consistent with
the data as trivially small values (or a value of zero). But the CI is not in an
ANOVA table and many researchers fail to report it. These five points suggest
that this experiment be replicated, with a larger sample size, to get a better
estimate of the interaction effect. The problem of course is that experiments
are rarely replicated, except in biomedical research.

The absurdity of the p-value decision rule strategy for interpretation of effects
after an ANOVA is highlighted by comparing the forest plot of model coefficients
of the real and fake urchin data. It would be absurd to use an ANOVA table to
interpret these patterns as radically different (one without an interaction and
constant main effects, the other with an interactioni and conditional effects).
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16.3.2 How to read ANOVA results reported in the text

ANOVA results are often reported in the text of a results section, using some-
thing like “Temperature had a significant effect on metabolism (F1,20 = 14.5,
p = 0.001). There was no effect of CO2 on metabolism (F1,20 = 4.1, p = 0.26)”.
The subscripts of the F statistic are the numerator and denominator degrees of
freedom (df) of the F -value (These df are a column in the ANOVA table. The
denomintor df may not appear in the table if it is the residual df and the row
for the residual term was not reported). Sometimes I find the reported df are
not consistent with the description of the design and analysis, which means the
data were not analyzed as stated.

16.3.3 Better practice – estimates and their uncertainty

As emphasized in the previous chapter, the decision to include or exclude an
interaction effect in the model should not be based on a p-value but on the goals
of the model.

1. If the goal is the interaction (because a scientific model predicts one, or
because this is biology and everything is conditional), then estimate the
interaction effect (as a coefficient of the model!) and its uncertainty, in-
cluding a CI and p-value. There is no controversy on how to estimate
this effect and its uncertainty. The coefficient will be different between
dummy and effect coded models but this is okay because they have dif-
ferent specific interpretations but the same general interpretation. Use a
Harrel plot with the coefficients (including the interaction coefficient) to
show this estimate and uncertainty.

2. If the goal is to estimate constant main effects, then exclude the interaction
effect from the model and report the main effects (again, as coefficients
from the model or contrasts if other pairwise effects are desired) with their
uncertainty. Use an interaction plot (or bottom part of the harrell plot)
to justify forcing the interaction to zero (for example the interaction effect
adds little to the total sum of squares or the interpretation of a single
main effect or two (or more) conditional effects would be the same. Use a
Harrel plot that excludes the interaction term to show these main effects
and uncertainty.

3. And if a researcher is interested in the effects of the factors but there is
strong evidence for a non-trivial interaction, then report the conditional ef-
fects (as contrasts) with their uncertainty. Use a Harrel plot that includes
the interaction term to show these conditional effects and uncertainty. If
there is an obvious interaction, it probably doesn’t make sense to inter-
pret the main effects, contrary to what some people argue. If there is a
positive effect of factor A across all levels of factor B, we don’t really need
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a p-value to test that the average of these positive effects is significant.
This doesn’t add value to the plot and any conditional effects that are
reported.

Notice that an ANOVA table has no role in this recommendation.

16.4 Unbalanced designs

My recommendation above is to not bother with ANOVA, but to simply com-
pute the contrasts of interest using the linear model. But if you really want to
use ANOVA, you should be aware that if the design is unbalanced, factor
order matters in the default R anova function and that I routinely find
published ANOVA tables that report statistics (F and p values) that are not
what the authors think they are.

An unbalanced design is one in which the number of replicates differs among
the cell. The urchin data is balanced because there are six replicates in each
cell. If the respirometer broke before taking the respiratory measures of the
final tank, the design would be unbalanced, one of the cells would have only five
replicates.

Let’s look at the effect of row order on the statistics of the urchin data using
R’s default anova function.

Df

Sum Sq

Mean Sq

F value

Pr(>F)

Temp

1

60.20

60.20

19.06

0.00030

CO2

1

16.52

16.52
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5.23

0.03325

Temp:CO2

1

10.81

10.81

3.42

0.07910

Df

Sum Sq

Mean Sq

F value

Pr(>F)

CO2

1

16.52

16.52

5.23

0.03325

Temp

1

60.20

60.20

19.06

0.00030

CO2:Temp

1

10.81

10.81

3.42

0.07910
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Now let’s unbalance the data, by removing three random replicates (these may
be both in one cell or spread across cells. First, here is the number of replicates
in each cell:

##
## CO2- CO2+
## Temp- 6 4
## Temp+ 6 5

And here are the two tables with the order of Temp and CO2 reversed in the
model

Df

Sum Sq

Mean Sq

F value

Pr(>F)

Temp

1

62.25

62.25

18.44

0.00049

CO2

1

21.49

21.49

6.36

0.02190

Temp:CO2

1

6.38

6.38

1.89

0.18720
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Df

Sum Sq

Mean Sq

F value

Pr(>F)

CO2

1

17.59

17.59

5.21

0.03561

Temp

1

66.14

66.14

19.59

0.00037

CO2:Temp

1

6.38

6.38

1.89

0.18720

Several observations are important.

1. the statistics for the last row, which is the interaction, does not change.
2. if these data were analyzed in the software package JMP, or SAS, or SSPS

then order wouldn’t matter. Here is what the tables would look like

Sum Sq

Df

F value
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Pr(>F)

Temp

58.77

1

17.41

0.00064

CO2

19.93

1

5.90

0.02648

Temp:CO2

6.38

1

1.89

0.18720

Sum Sq

Df

F value

Pr(>F)

CO2

19.93

1

5.90

0.02648

Temp

58.77

1

17.41

0.00064

CO2:Temp
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6.38

1

1.89

0.18720

3. Order does not change the statistics in the coefficient table, even for un-
balanced data:

Estimate

Std. Error

t value

Pr(>|t|)

(Intercept)

9.50

0.407

23.367

0.0000

Temp1

-1.70

0.407

-4.172

0.0006

CO21

0.99

0.407

2.430

0.0265

Temp1:CO21

-0.56

0.407

-1.374

0.1872
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Estimate

Std. Error

t value

Pr(>|t|)

(Intercept)

9.50

0.407

23.367

0.0000

CO21

0.99

0.407

2.430

0.0265

Temp1

-1.70

0.407

-4.172

0.0006

CO21:Temp1

-0.56

0.407

-1.374

0.1872

16.4.1 What is going on in unbalanced ANOVA? – Type
I, II, III sum of squares

Type I sum of squares. Here is the (default) ANOVA table using Type I
sum of squares for the urchin data with the three missing rows.

Df

Sum Sq
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Mean Sq

F value

Pr(>F)

Temp

1

62.248

62.248

18.4

0.0005

CO2

1

21.488

21.488

6.4

0.0219

Temp:CO2

1

6.377

6.377

1.9

0.1872

Residuals

17

57.399

3.376

The default coding of dummy variables in R’s lm function is dummy coding,
which is the coding used for Type I or Sequential Sum of Squares. The
hypothesis tested by each row in the ANOVA table using Type I sum of squares
is the effect of that row’s term conditional on all terms before it in the model
(or above it in the table) and ignoring all terms after it in the model (or below
it in the table).
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1. The hypothesis tested by the p-value for Temp is the same as if Temp
were the only term in the model (other than the intercept). That is, the
means are estimated for each level of Temp ignoring the fact that half
the replicates within each level of Temp experienced low CO2 and half
experienced high CO2

2. The hypothesis tested by the p-value for CO2 is conditional on Temp.
That is, the difference in metabolism between CO2+ and CO2− when
Temp is “held constant” (or for all cases where Temp takes the same
value). This is equivalent to the hypothesis that the difference in the
marginal means of CO2 is zero.

3. The hypothesis tested by the p-value for the interaction is conditional on
all other terms and nothing is ignored.

Type II sum of squares. Here is the ANOVA table using Type II sum of
squares for the urchin data with missing values. The interaction term is excluded
from the linear model, because type II sum of squares are used to estimate main
effects ignoring the interaction (so this would make sense only if a plot of the
effects suggested a small interaction relative to the main effects). The sum of
squares for the main effects would be the same if the interaction were included
but the residual df, and thus the F and P-values would differ.

Df

Sum Sq

Mean Sq

F value

Pr(>F)

Temp

1

66.145

66.145

18.7

0.0004

CO2

1

21.488

21.488

6.1
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0.0241

Residuals

18

63.776

3.543

The hypothesis tested by each row in the ANOVA table using Type II sum of
squares is the effect of that row’s term conditional on all terms at the same level
or below but ignoring all terms at a higher level in the model (or below it in
the table). For example, the hypothesis test for a factor is conditioned on other
factors but ignores interaction terms among the factors. Consequently, these
hypotheses tested are

1. The hypothesis tested by the p-value for Temp is conditional on CO2.
This is the same hypothesis that would occur using Type I sum of squares
but placing Temp second in the model, after CO2 (and it is in fact how I
computed it for the table).

2. The hypothesis tested by the p-value for CO2 is conditional on Temp.
This is exactly the hypothesis for CO2 using the Type I sum of squares
above.

Type III sum of squares. Here is the ANOVA table using Type III sum of
squares for the urchin data for missing data. The interaction term is excluded
from the linear model, and advocates of using Type III sum of squares explicitly
want this in the model.

Sum Sq

Df

F value

Pr(>F)

Temp

58.770

1

17.406

0.0006

CO2

19.935

1
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5.904

0.0265

Temp:CO2

6.377

1

1.889

0.1872

Residuals

57.399

17

The hypothesis tested by each row in the ANOVA table using Type III sum of
squares is the effect of that row’s term conditional on all terms in the model.

1. The hypothesis tested by the p-value for Temp is conditional on CO2 and
Temp : CO2.

2. The hypothesis tested by the p-value for CO2 is conditional on Temp and
Temp : CO2.

3. The hypothesis tested by the p-value for Temp : CO2 is conditional on
Temp and CO2. This is the same for Type I sum of squares (and Type
II, if the interaction term were included)

16.4.2 Back to interpretation of main effects

16.4.3 The anova tables for Type I, II, and III sum of
squares are the same if the design is balanced.

16.5 Working in R

16.5.1 Type I sum of squares in R

The base R function anova() computes the ANOVA table using Type I sum of
squares for any fit model object, such as that returned by lm. Here is a script
for the urchin data. I first create unbalanced data by deleting the first row that
is the control row.
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cn_rows <- which(urchin[, Temp]=="Temp-" & urchin[, CO2]=="CO2-") # gives the rows of the controls
urchin_unbalanced <- urchin[-cn_rows[1],] # deletes the row that is in first element of cn_rows
urchin.t1 <- lm(Resp ~ Temp*CO2, data=urchin_unbalanced)
anova(urchin.t1)

## Analysis of Variance Table
##
## Response: Resp
## Df Sum Sq Mean Sq F value Pr(>F)
## Temp 1 55.696 55.696 16.9244 0.0005907 ***
## CO2 1 18.411 18.411 5.5946 0.0288072 *
## Temp:CO2 1 9.204 9.204 2.7970 0.1108298
## Residuals 19 62.527 3.291
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

16.5.2 Type II and III Sum of Squares

Type II sum of squares can be computed manually simply by fitting the model
twice, once with the factors ordered one way and then with the factors ordered
the opposite way. The car package has the function Anova that specifically
outputs Type II and Type III ANOVA tables.

Type II sum of squares can be fit with the interaction in the model, and this
generates the Type II sum of squares for the main terms but the residual is
wrong for the F -ratio because it is the residual from the full model and Type
II assumes the interaction effect is zero. So, if one wants an ANOVA table with
a F and p that reflect this, then the interaction should be dropped from the
model.

urchin.t2 <- lm(Resp ~ Temp*CO2, data=urchin_unbalanced)
Anova(urchin.t2, type="2")

## Anova Table (Type II tests)
##
## Response: Resp
## Sum Sq Df F value Pr(>F)
## Temp 52.711 1 16.0173 0.0007624 ***
## CO2 18.411 1 5.5946 0.0288072 *
## Temp:CO2 9.204 1 2.7970 0.1108298
## Residuals 62.527 19
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



438 CHAPTER 16. ANOVA TABLES

urchin.t2 <- lm(Resp ~ Temp + CO2, data=urchin_unbalanced)
Anova(urchin.t2, type="2")

## Anova Table (Type II tests)
##
## Response: Resp
## Sum Sq Df F value Pr(>F)
## Temp 52.711 1 14.6968 0.001038 **
## CO2 18.411 1 5.1333 0.034725 *
## Residuals 71.731 20
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

To get type III sum of squares, we need to specify effects coding for the model
matrix. The safest way to do this is something like this

con3 <- list(Temp=contr.sum, CO2=contr.sum) # change the contrasts coding for the model matrix
urchin.t3 <- lm(Resp ~ Temp*CO2, data=urchin_unbalanced, contrasts=con3)
Anova(urchin.t3, type="3")

## Anova Table (Type III tests)
##
## Response: Resp
## Sum Sq Df F value Pr(>F)
## (Intercept) 2148.60 1 652.8939 3.559e-16 ***
## Temp 54.71 1 16.6241 0.0006422 ***
## CO2 17.15 1 5.2119 0.0341221 *
## Temp:CO2 9.20 1 2.7970 0.1108298
## Residuals 62.53 19
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



Chapter 17

Predictive Models

This chapter focusses on modeling observational data with multiple X vari-
ables, both continous and categorical. The classical analysis of multiple X vari-
ables is multiple regression, sometimes called multivariable regression and
occassionally, but incorrectly, called multivariate regression – “multivariate”
refers to multiple Y variables.

The models in this chapter have the structure

Y = β0 + β1X1 + β2X2 + β3X3 + ...βpXp + ε (17.1)

% where p is the number of X variables or predictors in the model. This
equation is easily generalized to both generalized linear models, linear mixed
models, and generalized linear mixed models.

17.1 Overfitting

When a model is fit to data, the model coefficients are estimates of the parame-
ters that “generated the data”. The value of an estimate is partly a function of
the signal (the parameter) and partly a function of the noise, which is unique
to the sample. At a low signal to noise ratio a model is mostly fitting the noise.
A measure of how well the model “fits” the data is R2, which is

R2 < −1 − SSresidual

SStotal
(17.2)

As X variables are added to a model, the R2 necessarily increases. Part of this
increase is due to added signal, but part is due to added noise. If the added
noise is more than the added signal, then the model fit – that is the parameter

439
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estimates – increasingly reflects the noise unique to the sample rather the signal
common to every sample. This is the basis of overfitting.

To demonstrate overfitting, I fit completely random X variables to the lifespans
for the control voles.

Think about it this way: if I create fake data in there are ten X variables that
are correlewhich Y is a simple column of random, normal variables that are not
a function of

17.2 Model building vs. Variable selection
vs. Model selection

17.2.1 Stepwise regression

17.2.2 Cross-validation

17.2.3 Penalization

17.2.3.1 AIC

17.2.3.2 LASSO

17.3 Shrinkage



Part VII – Expanding the
Linear Model
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Chapter 18

Linear mixed models

18.1 Random effects

Researchers often collect data in batches, for example

1. An ecologist interested in the effects of insectivorous birds on tree seedling
performance in a forest stake out ten 1 m2 plots and use a wire-mesh cage
to cover half of each plot 1. The cage allows insect herbivores into the
seedlings inside but excludes insectivorous birds that eat the insects from
the seedlings. In every plot, five seedlings are planted within the exclosure
and five outside of the exclosure. At the end of the experiment, the total
leaf mass is measured on each seedling. Small, uncontrolled, environmental
factors (including soil factors and density of insectivorous birds) will differ
between plots but will be common to all seedlings within a plot and we
would expect a common response to this uncontrolled variation on top
of the differential response to each treatment. As a consequence, the ten
measures of leaf mass within a plot are not independent.

2. A nutrition researcher wants to compare the effect of glucose vs. fructose
on glucose metabolism in humans. Ten individuals are recruited. Each
individual has blood insulin measured 60 minutes after a noon meal over
six successive days. The meal alternates between high glucose and high
fructose on each day. Each individual has three measures under high glu-
cose treatment and three measures under high fructose treatment. Small,
uncontrolled, environmental factors (including metabolic variation, other
meals, activity levels) will differ between the individuals but be common
within an individual and we would expect a common response to this un-
controlled variation on top of the differential response to each treatment.

1Giffard, B., Corcket, E., Barbaro, L., & Jactel, H. (2012). Bird predation enhances tree
seedling resistance to insect herbivores in contrasting forest habitats. Oecologia, 168(2), 415-
424
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As a consequence, the six measures of insulin within an individual are not
independent.

3. An ecologist wants to measure the effect of an invasive plant on the re-
production of a native plant. They stake-out ten, 2 m2 plots in a forest
and divide each plot into four quadrants, with each quadrant assigned
a different treatment: control, activated carbon (a procedural control),
extract from the invasive plant’s leaves, and both activated carbon and
extract from the invasive plant’s leaves. The response is seedling count.
Small, uncontrolled, environmental factors (including soil, drainage, and
light) will differ between plots but will be common to all four quadrants
within a plot and we would expect a common response to this uncon-
trolled variation on top of the differential response to each treatment. As
a consequence, the four sets of counts within a plot are not independent.

4. A physiologist has skeletal muscle cells growing in 5 control cultures, and
5 treated cultures. The Y variable is cell diameter, which is measured
in 10 cells per culture. Small, uncontrolled, environmental factors (in-
cluding chemical) will differ between cultures but will be common to all
cells within a culture and we would expect a common response to this un-
controlled variation on top of the differential response to each treatment.
As a consequence, the ten measures of diameter within a culture are not
independent.

5. A behavioral biologist wants to measure the effect of a predator fish on
the preferred feeding location (open water or vegetation) of a prey fish.
Ten tanks are set up with equal amounts of vegetated and unvegetated
area. One-third of each tank is screened off to house a predator fish,
which are added to five of the tanks. Ten prey fish are added to each
tank. The response is minutes spent foraging in the open water as a
fraction of total time foraging, which is measured in each fish in each
tank. Small, uncontrolled, environmental factors (including temperature,
water chemistry, light, and fish behavior) will differ between the tanks
but be common within tanks and we would expect a common response
to this uncontrolled variation on top of the differential response to each
treatment. As a consequence, the ten measures of foraging of each fish
within a tank are not independent.

6. A microbiologist wants to measure the effect of the microbiome on autism-
spectrum-disorder(ASD)-like behavior in mice2. Intestinal microbobial
communities from five humans with ASD and five humans without ASD
are transferred to germ-free mice via fecal transplant. Each human donor
is used to colonize three mice. The response is time socializing in a di-
rect social interaction. Uncontrolled features of each microbial community
(species composition and proportions) will differ among human donors but
will be the same within human donors and we would expect a common

2Sharon, G., Cruz, N.J., Kang, D.W., Gandal, M.J., Wang, B., Kim, Y.M., Zink, E.M.,
Casey, C.P., Taylor, B.C., Lane, C.J. and Bramer, L.M., 2019. Human Gut Microbiota from
Autism Spectrum Disorder Promote Behavioral Symptoms in Mice. Cell, 177(6), pp.1600-
1618.
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response to this uncontrolled variation in addition to any differential re-
sponse to ASD-associated microbiota. As a consequence, the measures of
behavior in the three mice within a donor group are not independent.

The batches – plots in experiment 1, individuals in experiment 2, plots in ex-
periment 3, cultures in experiment 4, tanks in experiment 5, and mice in ex-
periment 6 – are the experimental units, meaning that it is at this level that
the experimenter is controlling the conditions. In each of these studies, there is
systematic variation at two levels: among treatments due to treatment effects
and among batches due to batch effects. This among-batch variation is the
random effect. An assumption of modeling random effects is that the batches
(plots/individuals/cultures/tanks/donor) are a random sample of the batches
that could have been sampled. This is often not strictly true as batches are
often convenience samples.
The multiple measures within a batch are subsamples but are often called re-
peated measures if the batch is an individual (experiment 2 is an example).
If multiple measures within a treatment level within a batch (that is, within a
batch × treatment combination) are taken over time, the data are longitudi-
nal. Not infrequently, subsamples within a treatment within a batch are called
“replicates”, but this can be confusing because the treatments are replicated at
the level of the batch and not at the level of the subsamples within a treatment
by batch combination. The batches are the independent experimental units.
The subsamples within a batch are not replicates.
The variation among batches/lack of independence within batches has different
consequences on the uncertainty of the estimate of a treatment effect. The
batches in experiments 1-3 are similar in that each contains all treatment levels.
In these, the researcher is interested in the treatment effect but not the variation
due to differences among the batches. The batches are nuissance factors that
add additional variance to the response, with the consequence that estimates
of treatment effects are less precise, unless the variance due to the batches is
explicitly modeled. In experiments like 1-3, the batches are known as blocks.
Including block structure in the design is known as blocking. Adding a blocking
factor to a statistical mode is used to increase the precision of an estimated
treatment effect.
Experiments 1 and 2 are examples of a randomized complete block with
subsampling design. “Complete” means that each block has all treatment
levels or combinations of levels if there is more than one factor. The subsampling
is not replication. The replicates are the blocks, because it was at this level
that treatment assignment was randomized. Experiment 3 is an example of a
randomized complete block design. The blocks are complete but there is
only one measure of the response per treatment.
The batches in experiments 4-6 are similar in that treatment is randomized to
batch, so each batch contains only a single treatment level. In these segre-
gated experimental designs, the variation among batches that arises from non-
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treatment related differences among batches confounds the variation among
batches due to a true treatment effect. An extreme example of this would be
experiment 4 (muscle cell cultures) with only a single culture with control condi-
tions and a single culture with treatment conditions. Imagine 1) the true effect
of the treatment is zero and 2) an unmeasured growth factor that happens to be
more concentrated in the treatment culture at the beginning of the experiment.
At the end of the experiment the cells in the treatment culture have an aver-
age diameter twice that of that in the control culture. The researcher is fooled
into thinking that the treatment caused the increased growth. Again, the repli-
cates are at the level of the cultures, because it was at this level that treatment
assignment was randomized. This means the researcher has a single replicate
(or, n = 1) in each treatment level, regardless of the number of cells that are
measured within each culture. A statistical analysis that uses the subsampling
within a replicate as the sample size is an example of pseudoreplication (Hurl-
bert 1984 xxx).

18.2 Random effects in statistical models

In all of the above examples, the researcher is interested in the treatment effect
but not the variation due to differences among the blocks. The blocks are nuis-
sance factors that add additional variance to the response, with the consequence
that estimates of treatment effects are less precise, unless the variance due to
the blocks is explicitly modeled. Including block structure in the design and in
the statistical model is known as blocking. A natural way to think about the
block factor is as a random effect, meaning that plots in experiment 1 or the
mice in experiment 3 are simply random samples from a population of plots or
mice. Modeling this using the residual-error specification looks like

yij = (β0 + β0j) + (β1 + β1j)xi + εi (18.1)

where i indexes the observation and j indexes the block (culture, plot, mouse,
etc). The intercept parameter β0j is a random intercept and the slope pa-
rameter β1j is a random slope. The intercept for observation i (that is, its
expected value when X = 0) has a fixed component (β0) that is common to all
observations and a random component (β0j) that is common within a block but
differs among blocks (see table below). In the above equation, I’ve used paren-
theses to show how these combine into the random intercept that is unique for
each block. Similarly, the random slope (treatment effect) has a fixed part (β1)
that is common to all observations and a random component (β1j) that is com-
mon within a block but differs among blocks (see table below). Again, these are
collected within a pair of parentheses in the equation above.

The linear mixed model specified above estimates a fixed intercept and fixed
slope (treatment effect) that are common to all observations and a random
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intercept and random slope for each block, each of which is common among
observations within a block but differ among observations in different blocks.

block

b0

b0j

b1

b1j

1

b0

b0,j=1

b1

b1,j=1

2

b0

b0,j=2

b1

b1,j=2

3

b0

b0,j=3

b1

b1,j=3

4

b0

b0,j=4

b1

b1,j=4

5

b0

b0,j=5

b1
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b1,j=5

6

b0

b0,j=6

b1

b1,j=6

Linear mixed models are called “mixed models” because they are a mix of fixed
and random factors. Another useful way to specify this model is to think about
it hierarchically, using

yij = β0j + β1jxi + εi (18.2)
εi ∼ N(0, σ) (18.3)

β0j = β0 + N(0, σ0) (18.4)
β1j = β1 + N(0, σ1) (18.5)

The first line states that the response is a function of a block-specific intercept
and a block specific slope plus some error that is unique to each observation.
The third and fourth lines state that these block-specific effects are themselves
a function of a common effect and a random term that is unique to each block.
That is, we have a hierarchical or multi-level structure to the model. Line 1 is
the top level and the effects that are specified in line 1 are a function of effects
at a second, lower level, which are specified in lines 3 and 4. Because of this
structure, linear mixed models are sometimes called hierarchical or multi-level
models.

Finally, it’s useful to think how to specify a linear mixed model using the
random-draw specification, as this leads naturally to generalized linear mixed
models, or GLMMs.

yij ∼ N(µij , σ) (18.6)
µij = β0j + β1jxi (18.7)
β0j ∼ N(β0, σ0) (18.8)
β1j ∼ N(β1, σ1) (18.9)

18.3 Linear mixed models are flexible

The linear mixed model in Equation (18.1) specifies both a random intercept
and a random slope but a researcher might limit the random effect to the inter-
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cept only, or less commonly, the slope only. Excluding the random slope from
Equation (18.1) results in the model

yij = (β0 + β0j) + β1xi + εi (18.10)

We might use a random-intercept-only model if we think that features of the
block would effect the mean response among blocks but not effect the difference
in treatment level (or treatment effect) among blocks. For example, differences
in the immune systems among the individual mice in experiment 3 might effect
growth in both the wild-type and engineered strains of staph but won’t effect the
difference in growth between wild-type and engineered strains from one mouse
to another.

Not more than you should know – For more complex mixed models, matrix
algebra makes the specification of the model much more manageable than the
scalar algebra in ??.

y = Xβ + Zu + ε (18.11)

where y is the vector of the response, Xβ is the linear predictor of fixed effects
and Zu is the linear predictor of random effects. X is the model matrix for
the fixed effects and β is the vector of fixed-effect terms (the fixed part of the
intercept (β0), including the fixed-effect coefficients for each of the

18.4 Blocking

18.4.1 Visualing variation due to blocks

To visualize random effects due to block, Let’s create fake data that look some-
thing like experiment 1, with a single factor with two treatment levels, k = 10
blocks, and n = 3 measures for each treatment level within each block. This
is a randomized complete block design with subsampling and has a total of
N = 2 × k × n measures of Y (and rows of the data.table).

Figure 18.1A shows the response as a function of treatment. The responses are
nicely symmetric around the treatment means (the blue and yellow lines). A
linear model (and generalized linear models, more generally) assumes that a
response, conditional on the X, are independent. Figure 18.1B shows how this
assumption is violated for the simulated data. That pattern of residuals within
a block around the treatment means does not look at all random. Instead, there
is a distinct pattern within a block for the points to cluster either below the
treatment means or above the treatment means. In blocks a, b, g, and i, all or
most of the responses are below their treatment mean (for example in block b,
all the yellow points are below the yellow line and two of three blue points are
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Figure 18.1: Visualizing random effects. A) The response in the two treatment
levels. B) The same data but separated by block. The blue line is at the control
mean and the yellow line is at the treated mean. The black dots are the mean
response within a block.
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below the blue line). In blocks d, e, f, and j, all or most of the responses are
above their treatment mean (for example, in block e, all three yellow points are
above the yellow line and all three blue points are above the blue line). In other
words, the responses within a block covary together. For a linear model, this is
known as correlated error.

18.4.2 Blocking increases precision of point estimates

Block effects are differences in expected mean response among blocks due to
unmeasured factors that are shared within blocks but not among blocks. A
classical linear model fails to model this component of the total variance in the
response, and as a consequence, this block-specific variance is part of the error
variance. One way to think about this is by moving the random intercept and
random slope components of equation (18.1) to the right and combining it with
the observation-specific (or “conditional”) error (εi)

yij = β0 + β1xi + (β0j + β1j + εi) (18.12)

A linear mixed model estimates the random effects parameters, so the residual
from observation i is εi. A linear model does not estimate the random effects
parameters, so the residual of observation i from a linear model is β0j +β1j +εi.
Consequently, the error variance from a linear model is larger than the error
variance from a linear mixed model fit to the same data. The consequence
of this on inference depends on the variance of the random effects relative to
the variance of the observation-specific error and on the subsample size. If the
variance due to random effects is relatively big and subsample size is relatively
small, then a linear mixed model estimates treatment effects with much more
precision (and p-values will be smaller).

This increased precision is seen in the coefficient table of three models fit to the
fake data in Figure 18.1.

A linear model fit to all data

term

estimate

std.error

statistic

p.value

conf.low

conf.high

TreatmentTr
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0.62441

0.3566

1.75

0.085

-0.089

1.338

A linear model fit to the means of each treatment level with each block

term

estimate

std.error

statistic

p.value

conf.low

conf.high

TreatmentTr

0.62441

0.54713

1.14

0.269

-0.525

1.774

A linear mixed model with both a random intercept and random slope fit to all
data

term

estimate

std.error

statistic

df

p.value

conf.low

conf.high
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TreatmentTr

0.62441

0.26995

2.31

9

0.046

0.095

1.154

Note that the estimates of treatment effect do not differ among models. What
does differ is the estimated standard error of the treatment effect, which is 24%
smaller in the linear mixed model relative to that in the linear model, and 51%
smaller in the linear mixed model relative to that in the linear model fit to the
block means. This difference in SE propogates to the confidence intervals and
p-values.

Let’s explore this a wee bit more systematically using a simple, Monte Carlo
simulation experiment. 5000 fake data sets were generated. Each data set
simulated an experiment with a single treatment factor with two levels (“control”
and “treatment”). The design is a randomized complete block with subsampling.
There are 8 blocks and 3 subsamples in each treatment level per block. The
treatment effect (β1) is 1. The observation-specific (or “within-block”) variance
(σ2

varepsilon) is 1. The (“among-block”) variance of the random intercept (σ2
β0j)

is 1 – the same as the the within-block variance. The variance variance of the
random slope (σ2

β1j), which is due to a variable response of the treatment among
blocks, is 0.12).

The following three models were fit to all 5000 data sets

1. a linear model fit to all data, ignoring blocks (violating the independence
assumption)

2. a linear model fit to the treatment means of the blocks (valid, but throwing
out data)

3. a linear mixed model that models the random intercept3.

From each fit, I saved the 95% confidence interval of the treatment effect and
the p-value. The median width of the confidence interval and the power, which
is the relative frequency of p-values less than 0.05. The simulation was re-run
using the same parameters except setting the treatment effect (β1) to 0. In this
new simulation, the relative frequency of p-values less than 0.05 is the Type I
error.

3a random slope is not modeled because many of the models specifying a random slope fail
to converge, which is expected given the relatively small variance of the random slope
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Model

CI width

Power

Type I

1. lm
1.58
0.75
0.012

2. lm of means
2.39
0.31
0.002
3. lmm b0j

1.16
0.92
0.051

For data similar to that simulated, the linear mixed model using a blocking
factor has much more power than the linear model ignoring block (and ignoring
the lack of independence) or the linear model comparing the treatment level
means of the blocks. This lost power in the two linear models is due to the
conservative Type I error rate (extreme in the case of the linear model of the
group means). One take-home lesson here is, don’t throw away perfectly good
data if the design of the experiment includes a blocking factor!

18.5 Pseudoreplication

18.5.1 Visualizing pseduoreplication

Subsamples from batches are not replicates. Inference from a model fit to sub-
sampled observations without modeling the batches is called pseudoreplication,
a term famously coined by Hurlbert (1984). For data from a randomized com-
plete block design, ignoring the batches in the model will typically result in
larger standard errors, wider confidence intervals, and too conservative p-values.
In a segregated experiment, with only a single treatment level per batch (like
that in experiments 4-6 above), ignoring the lack of independence in the model
has the opposite effect. Standard errors are too small. Confidence intervals are
too narrow. P-values are too liberal. Type I error is inflated. Let’s visualize a
pseudoreplicated data set like this.
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Figure 18.2: A data set in which treatment and batch are confounded because
there is only one treatment level per batch.

This consequence of pseudoreplication when batch and treatment are con-
founded is seen in the coefficient table of four models fit to the fake data in
Figure 18.2.

A linear model fit to all data (pseudoreplication).

term

estimate

std.error

statistic

p.value

conf.low

conf.high

TreatmentTr

0.7175

0.31278

2.29

0.025
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0.091

1.344

A linear model fit the batch means.

term

estimate

std.error

statistic

p.value

conf.low

conf.high

TreatmentTr

0.7175

0.51803

1.39

0.238

-0.721

2.156

A linear mixed model with both random intercept and random slope.

term

estimate

std.error

statistic

df

p.value

conf.low

conf.high

TreatmentTr

0.7175

0.51797

1.39

3.32
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0.252

-0.298

1.733

A linear mixed model with random intercept.
term

estimate

std.error

statistic

df

p.value

conf.low

conf.high

TreatmentTr

0.7175

0.51803

1.39

4

0.238

-0.298

1.733

As with the blocked design, all models compute the same estimate of the treat-
ment effect. But in contrast to the blocked design, in this confounded design,
the standard error of the treatment effect is smaller in the linear model of all
data than that of the linear mixed models. This increased precision is an illu-
sion because the model fails to account for the lack of independence within the
batches.

One interesting result to note is the equivalence of the standard error, test
statistic, p-value, and confidence intervals of the linear model on the batch
means and the linear mixed model with a random intercept (but no random
slope) only. The two are equivalent. Murtaugh (xxx) has argued that with
this kind of design, it is much simpler to the analyst, and to your audience, to
simply use the linear model on the batch means. This raises the question, why
bother with subsampling within batch? One answer is, subsampling increases
the precision of the batch mean, and therefore, the precision of the treatment
effect. That said, the precision of a treatment effect is increased more efficiently
by adding more replicates (more batches), not more subsamples.
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Let’s explore the consequence of pseudoreplication with a confounded with a
Monte Carlo simulation experiment. 5000 fake data sets were generated. Each
data set simulated an experiment with a single treatment factor with two levels
(“control” and “treatment”). The design is treatment level randomized to batch
(only one treatment level per batch). There are 8 batches and 3 subsamples in
each batch. The treatment effect (β1) is zero. The observation-specific (or
“within-block”) variance (σ2

varepsilon) is 1. The (“among-block”) variance of the
random intercept (σ2

β0j) is 1 – the same as the the within-block variance. The
variance variance of the random slope (σ2

β1j), which is due to a variable response
of the treatment among blocks, is 0.12).

Because the effect is zero, the frequency of p-values less than 0.05 is the type I
error. The same three models fit to the simulated blocked data are fit to these
data. I don’t simulate an effect in order to compute power (at that effect size)
because the increased power in the linear model of all data is, again, an illusion.
It only comes at the cost of strongly elevated Type I error.

Model

CI width

Type I

1. lm
2.22
0.18

2. lm of means
3.80
0.05
3. lmm b0j

3.80
0.05

When treatment level is randomized to batch, the type I error rate of a linear
model fit to all data (and ignoring the lack of independence) is highly inflated.
Don’t do this.

18.6 Mapping NHST to estimation: A paired t-
test is a special case of a linear mixed model

Specifically, a paired t-test is equivalent to a linear mixed model with a single
factor with two treatment levels, k blocks, and a single measure of each treat-
ment level within each block. A good example is the wild type vs. engineered
staph count in mice in experiment 3 above. A linear mixed model is much more
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flexible than a paired t-test because it allows a researcher to add treatment lev-
els, additional factors, and covariates to the model. In addition, a linear mixed
model can handle missing data.

Here is fake data similar in design to experiment 3 with a single factor with two
treatment levels and both levels applied to the same experimental unit.

set.seed(2)
n <- 10 # number of mice (blocks)
x <- rep(c("WT","Tr"), each=n) # treatments
id <- rep(letters[1:n], 2) # block id
y <- c(rnorm(n, mean=10), rnorm(n, mean=11))
fake_data <- data.table(Y=y, X=x, ID=id)

The t-test p-value is

t.test(Y~X, data=fake_data, paired=TRUE)$p.value

## [1] 0.05336815

and the coefficient table of the fixed effect in the linear mixed model is

coef(summary(lme(Y~X, random = ~1|ID, correlation=corCompSymm(form=~1|ID), data=fake_data)))

## Value Std.Error DF t-value p-value
## (Intercept) 11.1797704 0.3438775 9 32.510914 1.212113e-10
## XWT -0.9686188 0.4358740 9 -2.222245 5.336815e-02

18.7 Advanced topic – Linear mixed models
shrink coefficients by partial pooling

In experiment 1 above, there are 10 sites (maybe different woodlots). In each
plot, five seedlings are planted inside a cage and five outside the cage. The cage
excludes insectivorous birds but not herbivorous insects. The researchers are
investigating how birds affect plant growth indirectly – by eating insects that
feed on the plants. The response is total leaf area in each seedling.

Let’s say we want to know the treatment effect in each of these sites. There are
several ways of estimating this.

1. Fit k separate models, one for each site. The intercept (control mean)
and slope (treatment effect) parameters for each site are estimated inde-
pendently from all other sites. Consequently, the model parameters are
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computed using no pooling. For the estimation of the β terms, this is
equivalent to a single, factorial linear model with Site modeled as a fixed
effect (this is not true for the estimate of the standard errors of these
terms since these are computed from the residual sum of squares of the
model. For balanced data, all of the “intercept” or “slope” terms will have
the same SE in the factorial analysis but differ among the k independent
analyses).

2. Fit a linear model to all the data combined as if these were from a single
site, and assign the intercept and treatment effect paramters to all sites.
The model parameters are computed using complete pooling.

3. Fit a linear mixed model to all the data, using site as a random factor
to estimate both random intercepts and slopes. Similar to the no-pooling
analysis, there will be different intercept (control mean) and slope (treat-
ment effect) estimates for each site, but unlike the no-pooling analysis,
these estimates are computed by combining information from the other
sites. The information used to estimate parameters in a linear mixed
model is somewhere in between no pooling and complete pooling and is
sometimes called partial pooling.

The consequence of partial pooling in a linear mixed model is that site intercepts
(control means) are pulled toward the single intercept in the complete-pooling
analysis and the site slopes (treatment effects) are pulled toward the single slope
in the complete-pooling analysis. This has the consequence that the differences
in parameter estimates among sites are shrunk toward zero. A consequence of
this shrinkage is that the variance of the intercept estimates or of the slope
estimates is smaller than that in the no-pooling analysis. Figure 18.3 shows this
shrinkage effect using fake data simulating the seedling experiment.

The linear mixed model estimates of the treatment effects for each site are a type
of shrinkage estimate and a linear mixed model is one kind of shrinkage
estimator. Shrinkage estimates have fascinating properties:

1. the variance of shrinkage estimates is less than that of ordinary least
squares estimates (no-pooling, or using the block as a fixed factor)

2. shrinkage estimates are biased but the OLS estimates are not. This means
that the expected value of a coefficient from the linear mixed model does
not equal the true (parameter) value! Or, more formally, E(bj) ̸= βj .

3. the mean square error of shrinkage estimates will be smaller than that
for OLS estimates.

The first property was discussed above and shown in Figure 18.3. The second
property raises the question, if we want to estimate the treatment effects within
each site, why would we ever want to use Site as a random instead of fixed
effect? The answer is the third property, which can be summarized as, “if we
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Figure 18.3: Shrinkage estimates of the treatment effect in a linear mixed model.
The grey line is the estimate using complete pooling (so there is only one es-
timate which is assigned to each site). In general, the partial-pooling (linear
mixed model) estimates (yellow) are generally closer to the complete pooling
estimate than the no-pooling (separate linear models) estimates (blue). More
specifically, if the no-pooling estimate is far from the complete pooling estimate,
the partial pooling estimate is much closer to the complete pooling estimate.
The consequence of partial pooling is that the differences among the estimates
are shrunk toward zero.



462 CHAPTER 18. LINEAR MIXED MODELS

were to replicate the experiment many times, the shrinkage estimates will be,
on average, less wrong (or closer to the true value) than the OLS estimates,
where”wrong” is the absolute deviation from the true value.”

When shrinkage estimators were first discovered, the third property surprised
stasticians. The third property has profound consequences. Consider a scenario
where researchers want to compare the performance of a new expression vector
to that of an existing expression vector on protein production using E. coli. The
researchers have ten different E. coli strains and are interested in strain-specific
effects because they will choose the three strains with the largest effects for
further testing. The researchers measure the response of each strain five times.

Effect of new expression vector on protein production in ten strains of E. coli
using a fixed effect factorial model and linear mixed model.

Strain

β1j

fixed b1j

random b1j

a

0.91

1.07

0.98

b

0.87

0.94

0.85

c

0.90

-1.03

0.30

d

0.81

0.64

0.63

e

1.09
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1.00

1.07

f

0.62

0.91

1.14

g

1.33

2.26

1.36

h

1.27

1.48

0.96

i

1.61

0.57

1.13

j

0.89

1.50

0.93

The table above shows the true strain-specific effect and both the fixed (OLS)
and random (LMM) effect estimates. The largest OLS estimate is 70% larger
than the true effect and the strain with the largest true effect is not among the
top three biggest OLS estimates (its ranking is 9/10). By contrast, the LMM
estimates are closer to the true effects and the top strain is among the three
largest LMM estimates.

These results are specific to these fake data but more generally, 1) the largest
OLS estimates are inflated (larger error from the true effect), relative to the
largest LMM estimates 2) overall, the LMM estimates will be closer than the
OLS estimates to the true effects

To understand this, rank order the treatment effects for each strain. An individ-
ual strain’s position in this rank is the sum of the true effect for that strain and
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some random error. Because OLS, relative to shrinkage estimates, have greater
variance in the estimate (that is, the random error component is bigger), the
biggest effects estimated by OLS are more likely to be big because of the error
component, compared to shrinkage estimates.

Not more than you want to know – Shrinkage estimators are not only
useful when we are interested in block-specific effects but are also useful for
estimating effects when there are multiple responses. For example, consider
a researcher interested in measuring the effects of some exercise treatment on
gene expression in adipose cells. The researcher measures expression levels in
10,000 genes. Given the typical content in undergraduate biostatics courses, a
researcher would probably model these responses using 10,000 t-tests, or equiv-
alently, 10,000 separate linear models. If the tests were ranked by p-value or
absolute effect size, many of the genes with largest absolute effect would be
there because of a large error component and many of the largest effects would
be massively overinflated. Re-imagining the design as a single, linear mixed
model with each gene modeled as a block would lead to a rank order in which
the biggest measured effects more closely approximate the true effects.

18.8 Working in R

The major function for working with linear mixed models is lmer() from the
lme4 package. An older, and still sometimes used and useful function is lme()
from the nlme package. The authors of the lme4 package argue that the df in a
linear mixed model are too approximate for a useful p-value and, consequently,
the lme function does not return a p-value. Many biological researchers want a
p-value and typically use the lmerTest package to get this.

Specifying a linear mixed model using lme. The random factor is in
the column “block”. To conform to some packages that use lme4 objects, any
variable used to model a random effect should be converted to type factor.

1. add a random intercept using y ~ treatment + (1|block). This adds a
random intercept for each level of treatment.

2. add a random slope and intercept using y ~ treatment + (treatment|block).
This adds a random intercept for each level of treatment and a random
slope for each level of treatment.

A message that might appear is “boundary (singular) fit: see ?isSingular”. This
does not mean there is a problem with the fit model.

A warning that “Model failed to converge with 1 negative eigenvalue” does mean
there is a problem. A solution is to simplify the model by, for example, removing
a random slope.
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18.8.1 coral data

Source Zill, J. A., Gil, M. A., & Osenberg, C. W. (2017). When environ-
mental factors become stressors: interactive effects of vermetid gastropods and
sedimentation on corals. Biology letters, 13(3), 20160957.

Dryad source https://datadryad.org/resource/doi:10.5061/dryad.p59n8

file name “VermetidSedimentData_ZillGilOsenberg_DRYAD.xlsx”

folder <- "Data from When environmental factors become stressors- interactive effects of vermetid gastropods and sedimentation on corals"
fn <- "VermetidSedimentData_ZillGilOsenberg_DRYAD.xlsx"
sheet_i <- "Coral Growth Rate Data"
file_path <- here(data_path, folder, fn)
coral <- read_excel(file_path, sheet=sheet_i) %>%
clean_names() %>%
data.table()

coral[, vermetids:=factor(vermetids)]
coral[, sediment:=factor(sediment)]

# recode levels of factors since 0 and 1
coral[, vermetids := fct_recode(vermetids,

absent = "0",
present = "1")]

coral[, sediment := fct_recode(sediment,
control = "0",
addition = "1")]

18.8.1.1 Fitting models

# to reproduce the results
# observation 2 should be excluded from the analysis
inc <- c(1, 3:nrow(coral))

# random intercept only
m1 <- lmer(growth_rate ~ vermetids*sediment + (1|block), data=coral[inc])
# random intercept and slope
m2 <- lmer(growth_rate ~ vermetids*sediment + (vermetids|block) + (sediment|block), data=coral[inc])
# to include the interaction as a random effect we'd need subsampling within each factorial treatment combination

The conditional effects of m1 are

# results using lmer fit
fit.emm <- emmeans(m1, specs=c("vermetids", "sediment"))

https://datadryad.org/resource/doi:10.5061/dryad.p59n8


466 CHAPTER 18. LINEAR MIXED MODELS

summary(contrast(fit.emm,
method = "revpairwise",
simple = "each",
combine = TRUE,
adjust="none"),

infer=c(TRUE, TRUE))

## sediment vermetids contrast estimate SE df lower.CL
## control . present - absent 0.00466 0.209 23.0 -0.428
## addition . present - absent -0.76889 0.217 23.6 -1.217
## . absent addition - control 0.28520 0.217 23.6 -0.163
## . present addition - control -0.48834 0.209 23.0 -0.921
## upper.CL t.ratio p.value
## 0.4373 0.022 0.9824
## -0.3211 -3.547 0.0017
## 0.7330 1.316 0.2009
## -0.0557 -2.335 0.0286
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95

There is no “correct” way to compute the degrees of freedom for inferential
statistics (SE, CIs, p-values). Two common choices are “Kenward-Roger” and
“Satterthwaite”. There is little empirical reason to vastly prefer one over the
other (they each seem to perform a wee bit bitter under different conditions).
In emmeans, the Kenward-Roger degrees of freedom are the default. For Sat-
terthwaite, use the lmer.df argument:

fit.emm <- emmeans(m1,
specs=c("vermetids", "sediment"),
lmer.df = "satterthwaite")

summary(contrast(fit.emm,
method = "revpairwise",
simple = "each",
combine = TRUE,
adjust="none"),

infer=c(TRUE, TRUE))

## sediment vermetids contrast estimate SE df lower.CL
## control . present - absent 0.00466 0.209 22.9 -0.428
## addition . present - absent -0.76889 0.216 23.5 -1.215
## . absent addition - control 0.28520 0.216 23.5 -0.161
## . present addition - control -0.48834 0.209 22.9 -0.921
## upper.CL t.ratio p.value
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## 0.4374 0.022 0.9824
## -0.3226 -3.559 0.0016
## 0.7315 1.320 0.1994
## -0.0556 -2.335 0.0287
##
## Degrees-of-freedom method: satterthwaite
## Confidence level used: 0.95

If you want to compute the coefficient table or an ANOVA, lmer does not output
test statistics. To get test statistics, you have to load the library “lmerTest”
(which automatically loads “lme4”). With lmerTest, the Satterthwaite degrees
of freedom are the default. For Kenward-Roger, use the ddf argument in either
summary() (for the coefficients) or anova() (for ANOVA).

coef(summary(m1)) # default is Satterthwaite

## Estimate Std. Error df
## (Intercept) 1.268411111 0.1541680 30.42768
## vermetidspresent 0.004655556 0.2091398 22.94243
## sedimentaddition 0.285202305 0.2160126 23.53130
## vermetidspresent:sedimentaddition -0.773546750 0.3006674 23.24638
## t value Pr(>|t|)
## (Intercept) 8.22745788 3.129900e-09
## vermetidspresent 0.02226049 9.824326e-01
## sedimentaddition 1.32030428 1.994327e-01
## vermetidspresent:sedimentaddition -2.57276556 1.693404e-02

coef(summary(m1, ddf="Kenward-Roger"))

## Estimate Std. Error df
## (Intercept) 1.268411111 0.1541680 30.43671
## vermetidspresent 0.004655556 0.2091398 23.03604
## sedimentaddition 0.285202305 0.2167687 23.62024
## vermetidspresent:sedimentaddition -0.773546750 0.3012111 23.33762
## t value Pr(>|t|)
## (Intercept) 8.22745788 3.122797e-09
## vermetidspresent 0.02226049 9.824319e-01
## sedimentaddition 1.31569876 2.009032e-01
## vermetidspresent:sedimentaddition -2.56812158 1.708128e-02

Compare the output from emmeans and coef(summary()) using the different
methods for computing the df.
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Chapter 19

Generalized linear models I:
Count data

Biologists frequently count stuff, and design experiments to estimate the effects
of different factors on these counts. For example, the effects of environmental
mercury on clutch size in a bird, the effects of warming on parasite load in a
fish, or the effect of exercise on RNA expression.

Count data differ from data with normal error in many ways, including 1) counts
are discrete, and can be zero or positive integers only, 2) counts tend to bunch
up on the small side of the range, creating a distribution with a positive skew,
3) a sample of counts can have an abundance of zeros, and 4) the variance of
counts increases with the mean (see Figure 19.1 for some of these properties).
Some count data can be approximated by a normal distribution and reasonably
modeled with a linear model but more often, count data are modeled with Pois-
son distribution or negative binomial distribution using a generalized
linear model (GLM). Poisson and negative binomial distributions are discrete
probability distributions with two important properties: 1) the distribution
contains only zero and positive integers and 2) the variance is a function of
the mean. Back before modern computing and fast processors, count data were
often analyzed by either transforming the response or by non-parametric
hypothesis tests. One reason to prefer a statistical modeling approach with a
GLM is that we can get interpretable parameter estimates. By contrast, both
the analysis of transformed data and non-parametric hypothesis tests are really
tools for computing “correct” p-values.

469
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Figure 19.1: Histogram of the count of a trematode parasite larvae in Control
vs. Infected fish. Fish in the Infected treatment are infected with a tapeworm.

19.1 The generalized linear model

As outlined in section [Assumptions for inference with statistical models] in
Chapter 1, a common way that biological researchers think about a response
variable is

yi = β0 + β1xi + εi (19.1)
ε ∼ N(0, σ) (19.2)

That is, we can think of a response as the sum of some systematic part and
“random errror”, which is a random draw from a normal distribution with mean
zero and variance σ2. This way of thinking about the generation of the response
is useful for linear models, and model checking linear models, but is not useful
for generalized linear models or model checking generalized liner models. For
example, if we want to model the number of parasites that have infected a fish
using a Poisson distribution, the following is the wrong way to think about the
statistical model

yi = β0 + β1xi + εi (19.3)
ε ∼ Poisson(λ) (19.4)
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That is, we should not think of a count as the sum of a systematic part and
a random draw from a Poisson distribution. Why? Because it is the counts
(or the counts conditional on X) that are poisson distributed, not the residuals
from the fit model.

Thinking about the distribution of count data using model (19.4) leads to absurd
consequences. For example, if we set the mean of the Poisson “error” to zero
(like with a normal distribution), then the error term for every observation
would have to be zero (because the only way to get a mean of zero with non-
negative integers is if every value is zero). Or, if the study is modeling the effect
of a treatment on the counts (that is, the X are dummy variables) then β0 is
the expected mean count of the control (or reference) group. But if we add
non-zero Poisson error to this, then the mean of the control group would be
larger than β0. This doesn’t make sense. And finally, equation (19.4) generates
a continuous response, instead of an integer, because β0 and β1 are continuous.

A better way to think about the data generation for a linear model, because
this naturally leads to the correct way to think about data generation for a
generalized linear model, is

yi ∼ N(µi, σ) (19.5)
E(Y |X) = µ (19.6)

µi = β0 + β1xi (19.7)

That is, a response is a random draw from a normal distribution with mean mu
(not zero!) and variance σ2. Line 1 is the stochastic part of this specification.
Line 3 is the systematic part.

The specification of a generalized linear model has both stochastic and sys-
tematic parts but adds a third part, which is a link function connecting the
stochastic and systematic parts.

1. The stochastic part, which is a probability distribution from the expo-
nential family (this is sometimes called the “random part”)

yi ∼ Prob(µi) (19.8)

2. the systematic part, which is a linear predictor (I like to think about
this as the deterministic part)

η = Xβ (19.9)

3. a link function connecting the two parts

ηi = g(µi) (19.10)
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µ (the Greek symbol mu) is the conditional mean (or expectation E(Y |X)) of the
response on the response scale and η (the Greek symbol eta) is the conditional
mean of the response on the link scale. A GLM models the response with
a distribution specified in the stochastic part. The probability distributions
introduced in this chapter are the Poisson and Negative Binomial. The natural
link function for the Poisson and Negative Binomial is the “log link”, η =
log(µ). More generally, while each distribution has a natural (or, “canonical”)
link function, one can use alternatives. Given this definition of a generalized
linear model, a linear model is a GLM with a normal distribution and an Identity
link (η = µ).

When modeling counts using the Poisson or negative binomial distributions
with a log link, the link scale is linear, and so the effects are additive on the link
scale, while the response scale is nonlinear (it is the exponent of the link scale),
and so the effects are multiplicative on the response scale. If this doesn’t make
sense now, an example is worked out below. The inverse of the link function
backtransforms the parameters from the link scale back to the response scale.
So, for example, a prediction on the response sale is exp(η̂) and a coefficient on
the response scale is exp(bj).

19.2 Count data example – number of trema-
tode worm larvae in eyes of threespine
stickleback fish

The example is an experiment measuring the effect of the parasitic tapeworm
Schistocephalus solidus infection on the susceptibility of infection from a sec-
ond parasite, the trematode Diplostomum pseudospathaceum, in the threespine
stickleback fish Gasterosteus aculeatus1. The treatment levels are “Control”
(unexposed to the tapeworm), “Uninfected” ” (exposed to the tapeworm but
uninfected), “Infected LG” (exposed and infected with the low growth popula-
tion of the tapeworm), and “Infected HG” (exposed and infected with the high
growth population of tapeworm). The response is the number of trematode
larvae counted in the eyes (right and left combined) of the fish. A histogram of
the counts is shown in Figure 19.1 for the control and Infected HG treatment
levels.

19.2.1 Modeling strategy

NHST blues – Students are often encouraged by textbooks, colleagues, or the
literature to start the analysis by first “testing” assumptions with hypothesis

1Benesh, D. P., & Kalbe, M. (2016). Experimental parasite community ecology: intraspe-
cific variation in a large tapeworm affects community assembly. Journal of Animal Ecology,
85(4), 1004-1013
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tests – for example using a Shaprio-Wilks test of normality as a decision rule to
decide if to use a parametric test such as a t-test or ANOVA if the null hypothesis
of normality is not rejected, or a non-parametric test such as a Mann-Whitney
U test if the null hypothesis of normality is rejected. I advise against this,
because 1) this pre-test filtering automatically invalidates the p-value of the
hypothesis test as it does not adjust for the filtering procedure, 2) real data are
only approximately normal and as n increses, a normality test will reject any
real dataset, and 3) hypothesis tests are pretty robust to non-normality anyway.

Instead of testing assumptions of a model using formal hypothesis tests before
fitting the model, a better strategy is to 1) fit a model, and then do 2) model
checking using diagnostic plots, diagnostic statistics, and simulation.

With these data, a researcher would typically fit a GLM with a Poisson or
negative binomial distribution and log link. Here, I start with a linear model
to illustrate the interpretation of diagnostic plots with non-normal data. I use
the “linear model” specification (equation (19.2)) because the diganostic plots
for model checking a linear model use the residuals of the fit model.

Diplo_intensityi = β0 + β1Uninfectedi + β2Infected_LGi + β3Infected_HGi + εi

(19.11)
ε ∼ N(0, σ) (19.12)

19.2.2 Checking the model I – a Normal Q-Q plot

Figure 19.2A shows a histogram of the residuals from the fit linear model. The
plot shows that the residuals are clumped at the negative end of the range,
which suggests that a model with a normally distributed conditional outcome
(or normal error) is not well approximated.

A better way to investigate this is with the Normal Q-Q plot in Figure 19.2B,
which plots the sample quantiles for a variable against their theoretical quan-
tiles. If the conditional outcome approximates a normal distribution, the points
should roughly follow the line. Instead, for the worm data, the points are above
the line at both ends. At the left (negative) end, this means that we aren’t
seeing the most negative values that would be expected (the observed values
are more positive than the theoretical values). Remembering that this plot is of
residuals, if we think about this as counts, this means that our smallest counts
are not as small as we would expect given the mean and a normal distribution.
This shouldn’t be surprising – the counts range down to zero and counts cannot
be below zero. At the positive end, the sample values are again more positive
than the theoretical values. Thinking about this as counts, this means that are
largest counts are larger than expected given the mean and a normal distribu-
tion. This pattern is exactly what we’d expect of count data, or at least count
data that borders zero.
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Figure 19.2: Diagnostic plots of stickleback parasite data. A) Distribution of
the residuals of the fit linear model. B) Normal Q-Q plot of the residuals of the
fit linear model.

Intuition Pump – Let’s construct a Normal Q-Q plot. A quantile (or per-
centile) of a vector of numbers is the value of the point at a specified percentage
rank. The median is the 50% quantile. The 95% confidence intervals are at the
2.5% and 97.5% quantiles. In a Normal Q-Q plot, we want to plot the quantiles
of the residuals against a set of theoretical quantiles.

1. To get the observed quantiles, rank the residuals of the fit linear model
from most negative to most positive – these are your quantiles! For ex-
ample, if you have n = 145 residuals, then the 73rd point is the 50%
quantile.

2. A theoretical quantile from the normal distribution can be constructed
using the qnorm function which returns the normal quantiles for a speci-
fied vector of percents. Alternatively, one could randomly sample n points
using rnorm. These of course will be sampled quantiles so will only ap-
proximate the expected theoretical quantiles, but I add this here because
we use this method below.

Now simply plot the observed against theoretical quantiles. Often, the stan-
dardized quantiles are plotted. A standardized variable has a mean of zero
and a standard deviation of one and is computed by 1) centering the vector
at zero by subtracting the mean from every value, and 2) dividing each value
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by the standard deviation of the vector. Recognize that because a standard
deviation is a function of deviations from the mean, it doesn’t matter which of
these operations is done first. A standardized theoretical quantile is specified
by qnorm(p, mean = 0, sd = 1), which is the default.

Below, I’ve plotted the standardized observed and theoretical quantiles against
the vector of percents (from 0 to 100%). This plot also nicely shows how the
residuals of the worm data deviate from that expected if these had a normal
distribution. The plot nicely shows that the most negative observed quintiles are
not as negative as expected given a normal distribution, which again makes sense
because this would imply negative counts since the mean is close to zero. And
it nicely shows that the most positive observed quantiles are more positive than
expected given a normal distribution, again this makes sense in right skewed
count data. Finally, the plot nicely shows that the median is less positive than
that expected given a normal distribution, which is at the mean (a right skew
tends to pull the mean to the right of the median).
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19.2.3 Checking the model II – scale-location plot for
checking homoskedasticity
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A linear model also assumes the error has constant variance (that is, the er-
ror variance is not a function of the value of X), or homoskedasticity. The fit
model can be checked for homoskedasticity using a scale-location plot, which is
a scatterplot of the positive square-root of the standardized residuals against
the fitted values2. If the residuals approximate a normal distribution, then a
regression line through the scatter should be close to horizontal. The regres-
sion line in the scale-location plot of the fit of the linear model to the worm
data shows a distinct increase in the “scale” (the square root of the standard-
ized residuals) with increased fitted value, which is expected of data that are
lognormally, Poisson, or negative binomially distributed.

19.2.4 Two distributions for count data – Poisson and
Negative Binomial

The pattern in the normal Q-Q plot in Figure 19.2B should discourage one
from modeling the data with a normal distribution and instead model the data
with an alternative distribution using a Generalized Linear Model. There is no
unique mapping between how data are generated and a specific distribution, so
this decision is not as easy as thinking about the data generation mechanism and
then simply choosing the “correct” distribution. Section 4.5 in Bolker (xxx) is an

2fitted values are the predicted values, Ŷ
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excellent summary of how to think about the generating processes for different
distributions in the context of ecological data. Since the response in the worm
data are counts, we need to choose a distribution that generates integer values,
such as the Poisson or the negative binomial.

1. Poisson – A Poisson distribution is the probability distribution of the
number of occurrences of some thing (an egg, a parasite, or a specific
mRNA transcript) generated by a process that generates the thing at a
constant rate per unit effort (duration or space). This constant rate is λ,
which is the expectation, so E(Y ) = µ = λ. Because the rate per effort is
constant, the variance of a Poisson variable equals the mean, σ2 = µ = λ.
Figure ?? shows three samples from a Poisson distribution with λ set
to 1, 5, and 10. The plots show that, as the mean count (λ) moves
away from zero, a Poisson distribution 1) becomes less skewed and more
closely approximates a normal distribution and 2) has an increasingly low
probability of including zero (less than 1% zeros when the mean is 5).

A Poisson distribution, then, is useful for count data in which the conditional
variance is close to the conditional mean. Very often, biological count data
are not well approximated by a Poisson distribution because the variance is
either less than the mean, an example of underdispersion3, or greater than
the mean, an example of overdispersion4. A useful distribution for count data
with overdispersion is the negative binomial.

lambda = 1 lambda = 5 lambda = 10

0 10 20 0 10 20 0 10 20

0

1000

2000

3000

count

3the variance is less than that expected by the probability model
4the variance is greater than that expected by the probability model
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2. Negative Binomial – The negative binomial distribution is a discrete prob-
ability distribution of the number of successes that occur before a specified
number of failures k given a probability p of success. This isn’t a very use-
ful way of thinking about modeling count data in biology. What is useful
is that the Negative Binomial distribution can be used simply as way of
modeling an “overdispersed” Poisson process. The mean of a negative
binomial variable is µ = k p

1−p and the variance is σ2 = µ + µ2/k. As
a method for modeling an overdispersed Poisson variable, k functions as
a **dispersion parameter* controlling the amount of overdispersion and
can be any real, positive value (not simply a positive integer), including
values less than 1.

19.2.5 Fitting a GLM with a Poisson distribution to the
worm data

Let’s fit a GLM with a Poisson distribution to the worm data. The model is

Diplo_intensityi ∼ Poisson(µi) (19.13)
E(Diplo_intensity|Treatment) = µ (19.14)

µi = exp(ηi) (19.15)
ηi = β0 + β1Uninfectedi + β2Infected_LGi + β3Infected_HGi

(19.16)

1. The first line of the model is the stochastic part stating the response is
modeled as a random Poisson variable with mean and variance µ (the rate
parameter λ of the Poisson distribution).

2. The second line states the µ is the conditional mean or conditional expec-
tation

3. The third line connects the conditional mean on the link scale (η) with
the conditional mean on the response scale (µ)

4. The fourth line is the linear predictor, and includes three dummy variables.

Remember that the conditional mean is the expected/predicted/fitted/modeled
value when X = xi.

19.2.6 Model checking fits to count data

we use the fit model to check 1. the overall similarity of observed and theoretical
distributions 2. if the observed distribution is over or under dispersed 3. if there
more zeros than expected by the theoretical distribution. If so, the observed
distribution is zero-inflated
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19.2.6.1 Model checking a GLM I – the quantile residual Q-Q plot

A quantile-quantile (Q-Q) plot is used to check overall similarity of the observed
distribution with the distribution that would be expected under the model. An
alternative to a Normal Q-Q plot for a GLM fit is a quantile residual Q-Q plot
of observed vs. expected quantile residuals. The basic algorithm for this is

1. Use the model parameters to simulate p fake values of the response for
each row of the data. This will be a n × p matrix of fake data where each
column is a new, random sample of a population with parameters equal to
that estimated for the observed data. For the Poisson, the parameter for
each observation will be µ̂i, the modeled value of observation i. For the
negative binomial, the parameters will be µ̂i and the dispersion parameter
k, which is the same for all observations.

2. For each observation (each row of the matrix of fake data), compute the
fraction of simulated values smaller than the observed value of the response
variable for that row. This fraction is the observed quantile residual,
which ranges in value from 0 to 1. If the true data are distribitued as
that specified by the model, then quantile residuals will have a uniform
distribution.

3. Sort the observed quantile residuals from smallest to largest and plot
against theoretical quantile residuals from a uniform distribution. One
could transform the quantile residuals to standard, normal residuals and
then plot using a traditional Normal Q-Q plot but this step isn’t necessary
(if reported, a Normal Q-Q plot of transformed quantile residuals might
confuse readers who failed to read the fine print).

Misconceivable – A common misconception is that if the distribution of the
response approximates a Poisson distribution, then the residuals of a GLM fit
with a Poisson distribution should be normally distributed, which could then be
checked with a Normal Q-Q plot, and homoskedastic, which could be checked
with a scale-location plot. Neither of these is true because a GLM does not
transform the data and, in fact, the model definition does not specify anything
about the distribution of an “error” term – there is no ε in the model defintion
above! This is why thinking about the definition of a linear model by speci-
fying an error term with a normal distribution can be confusing and lead to
misconceptions when learning GLMs.
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The Q-Q plot using quantile residuals with a Poisson distribution indicates that
the counts of Diplostomum larvae in the eyes of the threespine stickleback are
not well approximated by a Poisson distribution – there are too many observed
values near the ends of the expected tails, indicating the expected values are
not spread out enough. This pattern emerges because the observed counts are
overdispersed compared to a Poisson distribution.

19.2.6.2 Model checking a GLM II – a dispersion plot

If observed counts are Poisson distributed, then the Pearson residuals (ri) and
the residual degrees of freedom of the fit model (df) can be used to compute a
dispersion statistic

∑
ri

df
(19.17)

that has an expected value of 1. Instead of a formal hypothesis test of this
statistic, I use a simulation approach and ask, “if the observed counts are Pois-
son distributed, what is the expected frequency distribution of this dispersion
statistic?” and then use simulation to generate this expected distribution. The
algorithm for this is

1. For each observation i, generate a random Poisson count using µ̂ as the
parameter.

2. Fit the model and compute the dispersion statistic.
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Figure 19.3: Observed vs. expected dispersion statistic. The observed statistic
marked by the red line. The histogram of expected statistics are from 1000
simulations of the observed data.

3. Repeat 1 and 2 Niter times.

The plot below shows a histogram of the dispersion statistic computed for 1000
simulations of the worm data. The observed dispersion statistic is 3.4. The
expected value is 1.0. The mean of the simulated values is 1.

19.2.7 Fitting a GLM with a Negative Binomial distribu-
tion to the worm data

The model is

Diplo_intensity ∼ NB(µ, k) (19.18)
E(Diplo_intensity|Treatment) = µ (19.19)

µ = exp(η) (19.20)
η = β0 + β1Uninfected + β2Infected_LG + β3Infected_HG

(19.21)
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This model specifies a negative binomial distribution but otherwise is just like
that above specifying a Poisson distribution.

19.2.7.1 Model checking
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A quantile residual Q-Q plot of the GLM model fit with negative binomial
distribution is illustrated above. This looks pretty good.

19.2.7.2 Model means and coefficients

In a Generalized Linear Model of counts using either a Poisson or negative bi-
nomial distribution, modeled means, coefficients, and contrasts can be reported
either on the link or response scale. Remember, the response scale is a count,
while the link scale is a log(count).

The modeled means on the link scale are

## Treatment emmean SE df asymp.LCL asymp.UCL
## Control 1.82 0.0804 Inf 1.66 1.98
## Uninfected 1.50 0.1093 Inf 1.29 1.72
## Infected LG 1.62 0.1362 Inf 1.36 1.89
## Infected HG 2.36 0.0714 Inf 2.22 2.50
##
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95
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While the means on response scale are

## Treatment response SE df asymp.LCL asymp.UCL
## Control 6.18 0.497 Inf 5.28 7.24
## Uninfected 4.50 0.492 Inf 3.63 5.58
## Infected LG 5.07 0.691 Inf 3.89 6.63
## Infected HG 10.60 0.757 Inf 9.22 12.20
##
## Confidence level used: 0.95
## Intervals are back-transformed from the log scale

1. A mean on the response scale is simply the exponent of the mean on the
link scale. For example, the mean of the Control treatment level on the
response scale is exp(1.821408) = 6.180555.

2. The CIs on the link scale are symmetric around the mean but those on
the response scale are not. This is a feature, not a bug. Remember that
counts are right skewed which means a CI will have a wider right than left
interval. Check this!

3. If a plot includes a 1 SE error bar on the response scale, this is technically
correct but it encourages the practice of computing CIs using the 2*SE
rule of thumb. This rule breaks down for count data with right skewed
distributions.

4. Plotting the response scale CIs is both technically correct and makes the
2*SE rule of thumb unnecessary.

The model coefficients on the link scale are

## contrast estimate SE df asymp.LCL asymp.UCL z.ratio
## Uninfected - Control -0.317 0.136 Inf -0.583 -0.0514 -2.339
## Infected LG - Control -0.197 0.158 Inf -0.507 0.1126 -1.248
## Infected HG - Control 0.540 0.108 Inf 0.329 0.7504 5.019
## p.value
## 0.0193
## 0.2122
## <.0001
##
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95

Backtransforming the coefficients (but not the intercept) to the response scale
(using expbj) results in a response ratio.
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## contrast ratio SE df asymp.LCL asymp.UCL z.ratio
## Uninfected / Control 0.728 0.0988 Inf 0.558 0.95 -2.339
## Infected LG / Control 0.821 0.1298 Inf 0.602 1.12 -1.248
## Infected HG / Control 1.715 0.1845 Inf 1.389 2.12 5.019
## p.value
## 0.0193
## 0.2122
## <.0001
##
## Confidence level used: 0.95
## Intervals are back-transformed from the log scale
## Tests are performed on the log scale

1. Note how the emmeans package reports the name of the term as the
ratio of the coefficient term to the intercept term (the reference treatment
level). Why are the coefficients tranformed to ratios on the response scale?
Remember that a coefficient is a difference in conditional means and that
exp(B − A) = exp(B)

exp(A) . For a dummy variable as here (say “Infected HG”),
the response ratio is

RRInfected_HG = Infected_HG

Control
(19.22)

which give us the relative effect of Infected_HG compared to the Control.
Relative effects could be reported as a response ratio in a table, or in the text
it could be reported as a percent “Infected HG fish had 71.5% (95%CI: 38.9% -
111.8%) more Diplostomum larvae than Control fish.” Where do these percents
come from? The percent effect is 100(RRj − 1) larger than the reference mean
if the RRj > 1 or 100(1−RRj) smaller than the reference mean if the RRj < 1.

2. Backtransforming the intercept does not generate a ratio since the in-
tercept on the link scale is not a difference. For the worm analysis, the
intercept on the link scale is the mean count of the control group on the
link scale and the backtransformed intercept is the mean count of the
control group on the response scale.

3. Effects on the response scale are not additive but multiplicative! So, for
example, the mean of the Infected HG treatment level on the response
scale is Control ∗ RRInfected_HG (remember that with a linear model the
mean would be bControl + bInfected_HG). Check and see if this works.

19.3 Working in R

Fitting a GLM to count data. The poisson family is specified with the base
R glm() function. For negative binomial, use glm.nb from the MASS package
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# poisson - less likely to fit to real biological data well because of overdispersion
fit <- glm(y ~ treatment, family = "poisson", data = dt)

# two alternatives to overdispersed poisson fit
# quasipoisson
fit <- glm(y ~ treatment, family = "quasipoisson", data=dt)
# negative binomial - more likely to fit to real biological data well
# note that "family" is not an argument since this function is used only to fit a negative binomial distribution!
fit <- glm.nb(y ~ treatment, data = dt)

Fitting a GLM to a continuous conditional response with right skew.
The Gamma family is specified with the base R glm() function.

fit <- glm(y ~ treatment, family = Gamma(link = "log"), data = dt)

Fitting a GLM to a binary (success or failure, presence or absence,
survived or died) response
The binomial family is specified with base R glm() function.

# if the data includes a 0 or 1 for every observation of y
fit <- glm(y ~ treatment, family = "binomial", data = dt)

# if the data includes the frequency of success AND there is a measure of the total n
dt[ , failure := n - success]
fit <- glm(cbind(success, failure) ~ treatment, family = "binomial", data = dt)

Fitting Generalized Linear Mixed Models Generalized linear mixed mod-
els are fit with glmer from the lmer package.

# random intercept of factor "id"
fit <- glmer(y ~ treatment + (1|id), family = "poisson", data = dt)

# random intercept and slope of factor "id"
fit <- glmer(y ~ treatment + (treatment|id), family = Gamma(link = "log"), data = dt)

# Again, negative binomial uses a special function
fit <- glmer.nb(y ~ treatment + (treatment|id), data = dt)

Another good package for GLMMs is glmmTMB from the glmmTMB package

# negative binomial
fit <- glmmTMB(y ~ treatment + (1|id), family="nbinom2", data = dt)

# nbinom1, the mean variance relationship is that of quasipoisson
fit <- glmmTMB(y ~ treatment + (1|id), family="nbinom1", data = dt)
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19.3.1 Fitting a GLM to count data

Source publication: Benesh, D. P., & Kalbe, M. (2016). Experimental parasite
community ecology: intraspecific variation in a large tapeworm affects commu-
nity assembly. Journal of Animal Ecology, 85(4), 1004-1013.

Source data URL: https://datadryad.org/resource/doi:10.5061/dryad.bq8j8

Source file: “Lab_exp.csv”

Poisson fit. A quantile residual Q-Q plot can be generated using the package
DHARMa

fit.pois <- glm(Diplo_intensity ~ Treatment, family="poisson", data=worm)

# from the DHARMa package
n_sim <- 250
simulationOutput <- simulateResiduals(fittedModel = fit.pois, n = n_sim)
plot(simulationOutput, asFactor = F)
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A plot of the dispersion statistic can be generated using the object returned by
the SimulateOutput function but with refit = TRUE, which refits a model each
iteration. This refitting isn’t necessary if only the quantiile residuals are needed.
The Dharma package does not divide the sum of squared Pearson residuals by
the residual degrees of freedom and so the expected value of the statistic is df .

https://datadryad.org/resource/doi:10.5061/dryad.bq8j8
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# from the DHARMa package
n_sim <- 250
simulationOutput <- simulateResiduals(fittedModel=fit.pois, n=n_sim, refit=TRUE)
testDispersion(simulationOutput)

DHARMa nonparametric dispersion test via mean
deviance residual fitted vs. simulated−refitted

Simulated values, red line = fitted model. p−value (two.sided) = 0
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##
## DHARMa nonparametric dispersion test via mean deviance residual
## fitted vs. simulated-refitted
##
## data: simulationOutput
## dispersion = 3.3788, p-value < 2.2e-16
## alternative hypothesis: two.sided

Negative binomial fit.

fit.nb <- glm.nb(Diplo_intensity ~ Treatment, data=worm)
# from the DHARMa package
simulationOutput <- simulateResiduals(fittedModel = fit.nb, n = n_sim)
plot(simulationOutput, asFactor = F)
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# link scale
emm <- emmeans(fit.nb, specs="Treatment")
emm

## Treatment emmean SE df asymp.LCL asymp.UCL
## Control 1.82 0.0804 Inf 1.66 1.98
## Uninfected 1.50 0.1093 Inf 1.29 1.72
## Infected LG 1.62 0.1362 Inf 1.36 1.89
## Infected HG 2.36 0.0714 Inf 2.22 2.50
##
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95

summary(contrast(emm, method="trt.vs.ctrl", adjust="none"), infer=c(TRUE, TRUE))

## contrast estimate SE df asymp.LCL asymp.UCL z.ratio
## Uninfected - Control -0.317 0.136 Inf -0.583 -0.0514 -2.339
## Infected LG - Control -0.197 0.158 Inf -0.507 0.1126 -1.248
## Infected HG - Control 0.540 0.108 Inf 0.329 0.7504 5.019
## p.value
## 0.0193
## 0.2122
## <.0001
##
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95
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# response scale
emm.response <- emmeans(fit.nb, specs="Treatment", type="response")
summary(contrast(emm, method="trt.vs.ctrl", adjust="none", type="response"), infer=c(TRUE, TRUE))

## contrast ratio SE df asymp.LCL asymp.UCL z.ratio
## Uninfected / Control 0.728 0.0988 Inf 0.558 0.95 -2.339
## Infected LG / Control 0.821 0.1298 Inf 0.602 1.12 -1.248
## Infected HG / Control 1.715 0.1845 Inf 1.389 2.12 5.019
## p.value
## 0.0193
## 0.2122
## <.0001
##
## Confidence level used: 0.95
## Intervals are back-transformed from the log scale
## Tests are performed on the log scale

19.3.2 Fitting a generalized linear mixed model (GLMM)
to count data

19.3.3 Fitting a generalized linear model to continouus
data

19.4 Problems

Analyze the data that went into Fig 6B of Tena, A., Pekas, A., Cano, D., Wäck-
ers, F. L., & Urbaneja, A. (2015). Sugar provisioning maximizes the biocontrol
service of parasitoids. Journal of Applied Ecology, 52(3), 795-804.

1. Compute contrasts and CIs among all pairs of all three treatment levels
2. Make a better plot like 6b including 1) use the modeled mean instead of

the simple group mean and 2) use the modeled CI of the mean instead of
the SE computed within each group independently.

source URL: https://datadryad.org/resource/doi:10.5061/dryad.bj001

source file: “4_Parastism_Fig_6.csv”

https://datadryad.org/resource/doi:10.5061/dryad.bj001
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Chapter 21

Plotting functions
(#ggplotsci)

# palettes

# http://mkweb.bcgsc.ca/colorblind/palettes.mhtml#page-container
pal_nature <- c(
"#2271B2", # honolulu blue
"#3DB7E9", # summer sky
"#F748A5", # barbi pink
"#359B73", # ocean green
"#d55e00", # bamboo
"#e69f00", # gamboge, squash, buttercup
"#f0e442" # holiday,

)

pal_nature_black <- c(
"#000000", # black
"#2271B2", # honolulu blue
"#3DB7E9", # summer sky
"#F748A5", # barbi pink
"#359B73", # ocean green
"#d55e00", # bamboo
"#e69f00", # gamboge, squash, buttercup
"#f0e442" # holiday,

)

pal_nature_black_mod <- c(
"#000000", # black

495
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"#3DB7E9", # summer sky
"#e69f00", # gamboge, squash, buttercup
"#359B73", # ocean green
"#2271B2", # honolulu blue
"#f0e442", # holiday,
"#F748A5", # barbi pink
"#d55e00" # bamboo

)

pal_nature_mod <- c(
"#3DB7E9", # summer sky
"#e69f00", # gamboge, squash, buttercup
"#359B73", # ocean green
"#2271B2", # honolulu blue
"#f0e442", # holiday,
"#F748A5", # barbi pink
"#d55e00" # bamboo

)

pal_nature_alt <- c(
"#AA0DB4", # barney
"#FF54ED", # light magenta
"#00B19F", # strong opal
"#EB057A", # vivid rose
"#F8071D", # vivid red
"#FF8D1A", # dark orange
"#9EFF37" # french lime,

)

# https://mikemol.github.io/technique/colorblind/2018/02/11/color-safe-palette.html
# https://thenode.biologists.com/data-visualization-with-flying-colors/research/

pal_okabe_ito <- c(
"#E69F00",
"#56B4E9",
"#009E73",
"#F0E442",
"#0072B2",
"#D55E00",
"#CC79A7"

)
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21.1 odd-even

This is a function used in the funtion to create a p-value table that is used in
the plots. A user is unlikely to ever directly call this function.

odd <- function(x) x%%2 != 0
even <- function(x) x%%2 == 0

21.2 estimate response and effects with em-
means

estimate <- function(fit, # model fit
specs, # factor(s)
method = "revpairwise", # revpairwise
type = "response", # "link", "response"
adjust = "none" # p-value

){
# response table
fit_emm <- emmeans(fit, specs = specs, type = type)
response_table <- emm_table(fit_emm)

# effect table
fit_pairs <- summary(contrast(fit_emm,

method = method,
type = type,
adjust = adjust,
simple = "each",
combine = TRUE),

infer = c(TRUE, TRUE)) %>%
data.table()

effect_table <- pairs_table(fit_pairs)

return(list(
response = response_table,
effect = effect_table))

}
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21.3 emm_table

emm_table <- function(fit_emm){
table_out <- data.table(summary(fit_emm))
if("response" %in% colnames(table_out)){

# if the lm with log(y) or glm with log link, use " / "
setnames(table_out,

old = c("response"),
new = c("emmean"))

}
if("asymp.LCL" %in% colnames(table_out)){

# if the lm with log(y) or glm with log link, use " / "
setnames(table_out,

old = c("asymp.LCL", "asymp.UCL"),
new = c("lower.CL", "upper.CL"))

}
return(table_out)

}

21.4 pairs_table

This function takes the output from emmeans::contrast and creates a table used
by the plot functions to show p-values on the plot. A user would only call this
function directly if they wanted to do some major modifications of the template
here.

pairs_table <- function(fit_pairs){

if("ratio" %in% colnames(fit_pairs)){
# if the lm with log(y) or glm with log link, use " / "
groups <- unlist(str_split(fit_pairs$contrast, " / "))
setnames(fit_pairs, old = "ratio", new = "estimate")

}else{
# if lm use " - "
groups <- unlist(str_split(fit_pairs$contrast, " - "))

}

if("asymp.LCL" %in% colnames(fit_pairs)){
# if the lm with log(y) or glm with log link, use " / "
setnames(fit_pairs,

old = c("asymp.LCL", "asymp.UCL"),
new = c("lower.CL", "upper.CL"))
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}

# add the group1 and group 2 columns
fit_pairs[, group1 := groups[odd(1:length(groups))]]
fit_pairs[, group2 := groups[even(1:length(groups))]]

# for simple = each, beautify contrast column and group1, group2
if(which(colnames(fit_pairs)=="contrast") == 3){

# replace "." with blank
g_col <- colnames(fit_pairs)[1]
x_col <- colnames(fit_pairs)[2]
for(col in names(fit_pairs)[1:2]){
set(fit_pairs,

i=which(fit_pairs[[col]]=="."),
j=col, value="")

}

fit_pairs[, contrast := paste0(get(names(fit_pairs)[1]),
get(names(fit_pairs)[2]),
": ",
contrast)]

fit_pairs[get(g_col) == "", group1 := paste0(get(names(fit_pairs)[1]),
get(names(fit_pairs)[2]),
",",
group1)]

fit_pairs[get(g_col) == "", group2 := paste0(get(names(fit_pairs)[1]),
get(names(fit_pairs)[2]),
",",
group2)]

fit_pairs[get(x_col) == "", group1 := paste0(group1,
",",
get(names(fit_pairs)[1]),
get(names(fit_pairs)[2]))]

fit_pairs[get(x_col) == "", group2 := paste0(group2,
",",
get(names(fit_pairs)[1]),
get(names(fit_pairs)[2]))]

}

# create a column of nicely formatted p-values for display.
fit_pairs[, p := pvalString(p.value)]

}
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21.5 gg_mean_error

gg_mean_error generates mean-and-CI plots that look like those published in
most wet-bench experimental biology papers. I describe this more in the output
below.

The arguments to the function are (the bold face arguments are required):

1. data the data.table
2. x_col the name of the treatment column (“diet” for this file) containing

the treatment groups
3. y_col the name of response column (not the column of ratios!)
4. x_label = “none”, this is the label for the x-axis on the plot. “none” is

the default (so no need to include) and results in no label (the plot looks
better without it)

5. y_label = “Response (units)”, this is the label for the y-axis on the plot.
You do want to replace the default with something meaningful and sense
the y-variable is the adjusted response, it is important to include this in
the label, so something like: y_label = “adj. SCAT (g)”

6. dots = “sina”, this controls how the dots are plotted. “sina” is clever.
7. dodge_width = 0.8, this controls how closely spaced the groups are in the

plot
8. adjust = 0.5, this controls how wide the dots within each group
9. p_adjust = “none”, this controls p-value adjustment for multiple compar-

isons. This doesn’t matter for these data because there are only 2 groups
in the diet treatment, so only 1 comparison (MR - CN).

10. p_show = 0, is the row number in fit_pairs with the p-values to show
11. p_pos = NULL, is the relative vertical position (bottom to top) of the

p-values - the order matches the row index in p_show.

gg_mean_error <- function(data,
fit, # model fit from lm, lmer, nlme, glmmTMB
fit_emm,
fit_pairs,
x_col,
y_col,
g_col=NULL,
wrap_col=NULL,
x_label = "none",
y_label = "Response (units)",
g_label = NULL,
dots = "jitter",
dodge_width = 0.8,
adjust = 0.5,
p_show = 0,
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p_pos = NULL){

dt <- data.table(data)
gg <- NULL

if(is.factor(dt[, get(x_col)]) == FALSE){
dt[, (x_col) := factor(get(x_col))]

}
if(is.factor(dt[, get(g_col)]) == FALSE){
dt[, (g_col) := factor(get(g_col))]

}

fit_emm_dt <- emm_table(fit_emm)
fit_pairs_dt <- pairs_table(data.table(fit_pairs))

if(g_col == x_col | is.null(g_col)){
pd <- position_dodge(width = 0)
fit_pairs_dt[, x_min_col := group1]
fit_pairs_dt[, x_max_col := group2]

}else{
pd <- position_dodge(width = dodge_width)
fit_pairs_dt[, x_min_col := NA]
fit_pairs_dt[, x_max_col := NA]
if(is.null(g_label)){
g_label <- g_col

}
}

gg <- ggplot(data=dt, aes(x = get(x_col),
y = get(y_col),
color = get(g_col)))

# plot points
if(dots == "sina"){
gg <- gg + geom_sina(alpha = 0.5,

position = pd,
adjust = adjust)

}
if(dots == "jitter"){
gg <- gg + geom_point(alpha = 0.5,

position = "jitter")
}
if(dots == "dotplot"){
gg <- gg + geom_dotplot(binaxis='y',
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stackdir='center',
alpha = 0.5,
position = pd)

}

# plot means and CI
gg <- gg +
geom_errorbar(data = fit_emm_dt, aes(y = emmean,

ymin = lower.CL,
ymax = upper.CL,

color = get(g_col)),
width = 0,
position = pd

) +
geom_point(data = fit_emm_dt, aes(y = emmean,

color = get(g_col)),
size = 3,
position = pd

) +

# aesthetics
ylab(y_label) +
scale_color_manual(values=pal_nature_mod,

name = g_col) +
theme_pubr() +
theme(legend.position="top") +

NULL

if(g_col == x_col){
gg <- gg + theme(legend.position="none")

}

if(is.null(g_label)){
gg <- gg + guides(color = guide_legend(title=NULL))

}else{
gg <- gg + guides(color = guide_legend(title=g_label))

}

if(sum(p_show) > 0){ # show p-values
# get x positions for p-values
# [[3]] is 3rd layer which is means
if(is.na(fit_pairs_dt[1, x_min_col])){
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gg_data <- cbind(fit_emm_dt,
ggplot_build(gg)$data[[3]])

gg_data[, cell := paste(get(x_col), get(g_col), sep=",")]
match_it_ref <- match(fit_pairs_dt$group1, gg_data$cell)

fit_pairs_dt[, rowa := match(group1, gg_data$cell)]
fit_pairs_dt[, rowb := match(group2, gg_data$cell)]
fit_pairs_dt[, x_min_col := gg_data[rowa, x]]
fit_pairs_dt[, x_max_col := gg_data[rowb, x]]

}

if(is.null(p_pos)){
p_pos <- 1:length(p_show)

}
max_y <- max(dt[, get(y_col)], na.rm=TRUE)
min_y <- min(dt[, get(y_col)], na.rm=TRUE)
increment <- 0.1*(max_y - min_y)
for(i in 1:length(p_pos)){
pos <- p_pos[i]
y_position <- max_y + increment*pos
row <- p_show[i]
gg <- gg +
stat_pvalue_manual(fit_pairs_dt[row],

label = "p",
y.position=y_position,
xmin = "x_min_col",
xmax = "x_max_col",
tip.length = 0.01)

}

# make sure ylim includes p-value
y_hi <- max_y + 0.05*(max_y - min_y) +
increment*max(p_pos)

y_lo <- min_y - 0.05*(max_y - min_y)
gg <- gg + coord_cartesian(ylim = c(y_lo, y_hi))

}

# remove x axis title
if(x_label == "none"){
gg <- gg + theme(axis.title.x=element_blank())

}else{
gg <- gg + xlab(x_label)}
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gg

return(gg)
}

21.6 gg_ancova

gg_ancova generates a classic “ANCOVA” plot. This function would be directly
called by a user.
The arguments to the function are (the bold face arguments are required):

1. data the data.table
2. x_col the name of the treatment column (“diet” for this file) containing

the treatment groups
3. y_col the name of response column (not the column of ratios!)
4. cov_col, the name of the column containing the covariate (“bw_02_05_18”

for this file)
5. cov_label = “covariate (units)”, this is the label for the x-axis on the

plot which is the name of the covariate column. You do want to replace
the default with something meaningful. For these data, something like:
cov_label = “Body Mass (g)”

6. y_label = “Response (units)”, this is the label for the y-axis on the
plot. You do want to replace the default with something meaningful like:
y_label = “SCAT (g)”

7. add_p = TRUE, the defaults adds the p-value of the treatment (x_col)
effect

8. p_pos = “center”, controls the x-position of the p-value on the graph
9. p_adjust = “none”, this controls p-value adjustment for multiple compar-

isons. This doesn’t matter for these data because there are only 2 groups
in the diet treatment, so only 1 comparison (MR - CN).

gg_ancova <- function(data,
fit, # model fit from lm, lmer, nlme, glmmTMB
fit_emm,
fit_pairs,
x_col,
y_col,
cov_col,
cov_label = "covariate (units)",
y_label = "Response (units)",
add_ci = TRUE,
add_p = TRUE,
p_show = NULL,
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p_pos = "center",
p_adjust = "none"){

dt <- data.table(data)[, .SD, .SDcols = c(x_col, y_col, cov_col)]

dt <- data.table(fit$model)
if(is.factor(dt[, get(x_col)]) == FALSE){
dt[, (x_col) := factor(get(x_col))]

}

fit_emm_dt <- emm_table(fit_emm)
fit_pairs_dt <- pairs_table(data.table(fit_pairs))

g <- x_col
y <- y_col
x <- cov_col

new_wide <- dt[, .(xmin = min(get(x)), xmax = max(get(x))), by = get(g)]
new_long <- melt(new_wide,

measure.vars = c("xmin", "xmax"),
value.name = "x")

setnames(new_long, old = c("get", "x"), new = c(g, x))
yhat <- predict(fit,

new_long,
interval = "confidence")

new_long <- cbind(new_long, yhat)
setnames(new_long, old = c("fit"), new = c(y))

gg <- ggplot(dt, aes(
x = get(x),
y = get(y),
color = get(g)

)) +

geom_point(size = 3) +
labs(x = x,

y = y,
color = g) +

NULL

g_levels <- levels(dt[, get(g)])
new_long[, get := get(g)] # not sure how to avoid this

# add ci ribbons
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if(add_ci == TRUE){
for(g_i in g_levels){

gg <- gg +
geom_ribbon(data = new_long[get == g_i,],

aes(ymin = lwr,
ymax = upr,
# fill = get(g),
linetype = NA

),
alpha = 0.2,
show.legend = FALSE)

}
}

# add regression lines
for(g_i in g_levels){
gg <- gg +

geom_path(data = new_long[get == g_i,],
aes(x = get(x),

y = get(y),
color = get(g)

))
}

gg <- gg + # aesthetics
xlab(cov_label) +
ylab(y_label) +
scale_color_manual(values=pal_nature_mod) +
theme_pubr() +
theme(legend.position="top") +

NULL

if(is.null(p_show)){p_show := 1:nrow(fit_pairs_dt)}
if(sum(p_show) > 0){
if(p_pos == "center"){

x_p <- mean(range(dt[, get(cov_col)], na.rm = TRUE))
}
if(p_pos == "left"){
x_p <- min(dt[, get(cov_col)], na.rm = TRUE) + diff(range(dt[, get(cov_col)], na.rm = TRUE))/10

}
if(p_pos == "right"){

x_p <- max(dt[, get(cov_col)], na.rm = TRUE) - diff(range(dt[, get(cov_col)], na.rm = TRUE))/10
}
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pos_p <- 1:length(p_show)
max_y <- max(dt[, get(y_col)], na.rm = TRUE)
min_y <- min(dt[, get(y_col)], na.rm = TRUE)
increment <- 0.075*(max_y - min_y)

for(i in pos_p){
y_p <- max_y + increment*i
row <- p_show[i]

gg <- gg + annotate("text",
x = x_p,
y = y_p,
label = paste0(fit_pairs_dt[row, contrast],

": ",
fit_pairs_dt[row, p]))

}

}

gg

return(gg)
}

21.7 gg_mean_ci_ancova

gg_mean_ci_ancova generates mean-and-CI plots that look like those published
in most wet-bench experimental biology papers except that the dots are not the
raw y-values but the y-values adjusted for the covariate (here “bw_02_05_18”).
I describe this more in the output below.

The arguments to the function are (the bold face arguments are required):

1. data the data.table
2. x_col the name of the treatment column (“diet” for this file) containing

the treatment groups
3. y_col the name of response column (not the column of ratios!)
4. cov_col, the name of the column containing the covariate (“bw_02_05_18”

for this file)
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5. x_label = “none”, this is the label for the x-axis on the plot. “none” is
the default (so no need to include) and results in no label (the plot looks
better without it)

6. y_label = “Response (units)”, this is the label for the y-axis on the plot.
You do want to replace the default with something meaningful and sense
the y-variable is the adjusted response, it is important to include this in
the label, so something like: y_label = “adj. SCAT (g)”

7. dots = “sina”, this controls how the dots are plotted. “sina” is clever.
8. dodge_width = 0.8, this controls how closely spaced the groups are in the

plot
9. adjust = 0.5, this controls how wide the dots within each group

10. p_adjust = “none”, this controls p-value adjustment for multiple compar-
isons. This doesn’t matter for these data because there are only 2 groups
in the diet treatment, so only 1 comparison (MR - CN).

gg_mean_ci_ancova <- function(data,
x_col,
y_col,
cov_col,
x_label = "none",
y_label = "Response (units)",
dots = "sina",
dodge_width = 0.8,
adjust = 0.5,
p_adjust = "none"){

dt <- data.table(data)[, .SD, .SDcols = c(x_col, y_col, cov_col)]
ref_group <- levels(dt[, get(x_col)])[1]

# center the covariate by the mean of the reference,
# which means the intercept of the model will be EXP[Y]_ref
# at the average value of the covariate
mean_cov_ref <- mean(dt[get(x_col)==ref_group, get(cov_col)])
dt[, cov_col_c := get(cov_col) - mean_cov_ref]
cov_col_c <- paste0(cov_col, "_c")
setnames(dt, old = "cov_col_c", new = cov_col_c)

# two ways for computing adjusted y
# "xside_xxx" is the "x side" of the formula
# xside_1 doesn't use centered covariate but uses predicted value at mean covariate
# xside_2 uses the centered covariate
xside_1 <- paste(c(cov_col, x_col), collapse = " + ")
xside_2 <- paste(c(cov_col_c, x_col), collapse = " + ")

form1 <- formula(paste(y_col, "~", xside_1))
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form2 <- formula(paste(y_col, "~", xside_2))

m1 <- lm(form1, data = dt)
m2 <- lm(form2, data = dt)

# using model 2 - centered covariate in model
b <- coef(m2)
dummy <- as.integer(dt[, get(x_col)]) - 1
dt[, y_cond := b[1] + b[3]*dummy + residuals(m2)]

# using model 1 - prediction at mean covariate
new_data <- copy(dt)
new_data[, bw_02_05_18 := mean_cov_ref]
dt[, y_cond2 := predict(m1, new_data) + residuals(m1)]

# emmeans
temp_emm <- emmeans(m1,

specs = x_col) %>%
summary() %>%
data.table()

emm_offset <- b[1] - temp_emm[get(x_col) == ref_group, emmean]

fit_emm <- emmeans(m1,
specs = x_col,
offset = emm_offset)

fit_pairs <- contrast(fit_emm,
method = "revpairwise",
adjust = p_adjust) %>%

summary(infer = c(TRUE, TRUE))

fit_emm_dt <- data.table(summary(fit_emm))
fit_pairs_dt <- pairs_table(data.table(fit_pairs))

x_col1 <- x_col[1]
if(length(x_col)==2){
g_col <- x_col[2]

}else{
g_col <- x_col[1]

}

if(g_col == x_col1){
pd <- position_dodge(width = 0)

}else{
pd <- position_dodge(width = dodge_width)
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}

gg <- ggplot(data=dt, aes(x = get(x_col1),
y = y_cond,
color = get(g_col)))

# plot points
if(dots == "sina"){
gg <- gg + geom_sina(alpha = 0.5,

position = pd,
adjust = adjust)

}
if(dots == "jitter"){

gg <- gg + geom_dotplot(alpha = 0.5,
position = pd)

}

# plot means and CI
gg <- gg +
geom_errorbar(data = fit_emm_dt, aes(y = emmean,

ymin = lower.CL,
ymax = upper.CL,

color = get(g_col)),
width = 0,
position = pd

) +
geom_point(data = fit_emm_dt, aes(y = emmean,

color = get(g_col)),
size = 3,
position = pd

) +

# aesthetics
ylab(y_label) +
scale_color_manual(values=pal_nature_mod) +
theme_pubr() +
theme(legend.position="none") +

NULL

# add p-value
y_positions <- max(dt[, y_cond]) +
0.075*(max(dt[, y_cond]) - min(dt[, y_cond]))

gg <- gg +
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stat_pvalue_manual(fit_pairs_dt, # only show sox effects
label = "p",
y.position=y_positions)

# make sure ylim includes p-value
ymax <- max(dt[, y_cond])
ymin <- min(dt[, y_cond])
y_hi <- ymax + 0.115*(ymax - ymin)
y_lo <- ymin - 0.05*(ymax - ymin)
gg <- gg + coord_cartesian(
ylim = c(y_lo, y_hi),

)

# remove x axis title
if(x_label == "none"){
gg <- gg + theme(axis.title.x=element_blank())

}else{
gg <- gg + xlab(x_label)}

gg

return(gg)
}

21.8 gg_effects

gg_effects generates an “effects” plot, which is common in the clinical medicine
but not experimental biology literature. This is a function that you would di-
rectly call in the analysis pipeline if you wanted plots like these. The arguments
to the function are (the bold face arguments are required):

1. data the data.table
2. x_col the name of the treatment column (“diet” for this file) containing

the treatment groups
3. y_col the name of response column (not the column of ratios!)
4. cov_col, the name of the column containing the covariate (“bw_02_05_18”

for this file)
5. x_label = “none”, this is the label for the x-axis on the plot which is

the name of the covariate column. You do want to replace the default
with something meaningful. For these data, something like: cov_label =
“Body Mass (g)”

6. y_label = “contrast”, this is the label for the y-axis on the plot. You do
want to replace the default with something meaningful like: y_label =
“SCAT (g)”
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7. p_adjust = “none”, this controls p-value adjustment for multiple compar-
isons. This doesn’t matter for these data because there are only 2 groups
in the diet treatment, so only 1 comparison (MR - CN).

gg_effects <- function(data,
x_col,
y_col,
cov_col,
x_label = "none",
y_label = "contrast",
p_adjust = "none"){

dt <- data.table(data)[, .SD, .SDcols = c(x_col, y_col, cov_col)]

xside_1 <- paste(c(cov_col, x_col), collapse = " + ")

form1 <- formula(paste(y_col, "~", xside_1))

m1 <- lm(form1, data = dt)

fit_emm <- emmeans(m1,
specs = x_col)

fit_pairs <- contrast(fit_emm,
method = "revpairwise",
adjust = p_adjust) %>%

summary(infer = c(TRUE, TRUE))

fit_emm_dt <- data.table(summary(fit_emm))
fit_effect <- pairs_table(data.table(fit_pairs))

if(y_label == "contrast"){
y_label <- fit_effect[1, contrast]

}

fit_effect[, contrast := x_label]
# # fit_effect[, contrast_pretty := paste(group1, "\n-", group2)]
# # fit_effect[, contrast_pretty := paste(group1, "\n minus \n", group2)]
# if(is.null(y_label)){
# y_label <- "Difference in means (units)"
# }

min_bound <- min(fit_effect[, lower.CL])
max_bound <- min(fit_effect[, upper.CL])
y_lo <- min(min_bound+min_bound*0.2,
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-max_bound)
y_hi <- max(max_bound + max_bound*0.2,

-min_bound)
y_lims <- c(y_lo, y_hi)

gg <- ggplot(data=fit_effect, aes(x = fct_rev(contrast),
y = estimate)) +

geom_errorbar(aes(ymin=lower.CL,
ymax=upper.CL),

width=0,
color="black") +

geom_point(size = 3) +
geom_hline(yintercept=0, linetype = 2) +
coord_flip(ylim = y_lims) +
#coord_flip() +
#scale_y_continuous(position="right") +
theme_pubr() +
ylab(y_label) +
theme(axis.title.y = element_blank()) +
NULL

gg

return(gg)
}

gg_multiple_effects <- function(){

}
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Appendix 1: Getting
Started with R

21.9 Get your computer ready

21.9.1 Start here

Watch this video. The links for installing R and R studio are in the next sections.

Andy Field’s Installing R and RStudio

21.9.2 Install R

R is the core software. It runs under the hood. You never see it. To use R, you
need another piece of software that provides a user interface. The software
we will use for this is R Studio.

Download R for your OS

21.9.3 Install R Studio

R Studio is a slick (very slick) graphical user interface (GUI) for developing
R projects.

Download R Studio Desktop

21.9.3.1 Additional resources for installing R and R Studio**

On Windows

On a Mac
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https://www.youtube.com/watch?v=ZvPFKfNHBNQ
https://cran.r-project.org
https://www.rstudio.com/products/rstudio/download/
https://medium.com/@GalarnykMichael/install-r-and-rstudio-on-windows-5f503f708027
https://medium.com/@GalarnykMichael/install-r-and-rstudio-on-mac-e911606ce4f4
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21.9.4 Install R Markdown

In this class, we will write code to analyze data using R Markdown. R markdown
is a version of Markdown. Markdown is tool for creating a document containing
text (like microsoft Word), images, tables, and code that can be output to the
three modern output formats: html (web pages), pdf (reports and documents),
and microsoft word (okay, this isn’t modern but it is widely used).

R Markdown can output pdf files. The mechanism for this is to first create a
LaTeX (“la-tek”) file. LaTeX is an amazing tool for creating professional pdf
documents. You do not need PDF output for BIO 414/513. The directions for
installing R Markdown include directions for installing LaTeX. This is optional,
for this class, but I encourage you to do it.

Directions for installing R Markdown

21.9.5 (optional) Alternative LaTeX installations

On Windows

On a Mac

21.10 Start learning R Studio

R Studio Essentials, Programming Part 1 (Writing code in RStudio)

Getting Started with R Markdown

Andy Field’s RStudio basics of R Markdown

Data Visualisation chapter from R for Data Science

Graphics for communication chapter from R for Data Science

Youtube: An Introduction to The data.table Package

Coursera: The data.table Package

https://bookdown.org/yihui/rmarkdown/installation.html#installation
https://medium.com/@sorenlind/create-pdf-reports-using-r-r-markdown-latex-and-knitr-on-windows-10-952b0c48bfa9
https://medium.com/@sorenlind/create-pdf-reports-using-r-r-markdown-latex-and-knitr-on-macos-high-sierra-e7b5705c9fd
https://rstudio.com/resources/webinars/programming-part-1-writing-code-in-rstudio/
https://www.rstudio.com/resources/webinars/getting-started-with-r-markdown/
https://www.youtube.com/watch?v=u4ZdvYXjsIo
http://r4ds.had.co.nz/data-visualisation.html
http://r4ds.had.co.nz/graphics-for-communication.html
https://www.youtube.com/watch?v=pc1ARG6kbAM
https://www.coursera.org/learn/data-cleaning/lecture/trMZ7/the-data-table-package
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Resources for Getting
Started with Statistical
Modeling in R

Roughly, in order from most elementary to most advanced

Learning Statistics with R by Danielle Navarro and adapted to Bookdown (for
web viewing) by Emily Kothe.

Statististical Thinking for the 21st Century by Russell A. Poldrack

Regression Models for Data Science in R by Brian Caffo

Broadening Your Statistical Horizons: Generalized Linear Models and Multi-
level Models by J. Legler and P. Roback

Modern Statistics for Modern Biology

The Art of Data Science by Roger D. Peng and Elizabeth Matsui
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https://https://learningstatisticswithr-bookdown.netlify.com
http://statsthinking21.org
https://leanpub.com/regmods
https://bookdown.org/roback/bookdown-bysh/
https://bookdown.org/roback/bookdown-bysh/
https://www.huber.embl.de/msmb/index.html
https://bookdown.org/rdpeng/artofdatascience/
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Appendix 3: Fake Data
Simulations

21.11 Performance of Blocking relative to a lin-
ear model

# use these to debug code
sigma=1
sigma_b0=1
sigma_b1=1
beta_0=10
beta_1=1
n_batch=4
n_subsamp=2
y_label="Y"
trt_levels=c("cn","tr")
block_label="block"

fake_lmm_data <- function(iterations=1000, sigma=1, sigma_b0=1, sigma_b1=1, beta_0=10, beta_1=1, n_batch=6, n_subsamp=10, y_label="y", trt_levels=c("cn","tr"), batch_label="block", confound=FALSE){
# this function is constrained to simulate a single treatment with two levels
#
# arguments
# iterations - number of datasets to generate
# sigma: conditional error sd
# sigma_b0: sd of random intercepts
# sigma_b1: sd of random slope
# beta_0: fixed intercept (mean of reference)
# beta_1: fixed slope (difference tr - cn)
# n_batch: number of batches
# n_subsamp: number of observations per batch per treatment level
# confound: FALSE is randomized complete block, TRUE is confounded case where
# there is only one treatment level per batch

519
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#
# output
# A single matrix with each dataset stacked. The datasets are identified by
# the first column ("data_id")

if(sigma_b0==0){sigma_b0 <- 1e-10}
if(sigma_b1==0){sigma_b1 <- 1e-10}
n_iter <- iterations

levels_per_batch <- ifelse(confound==FALSE, 2, 1)
fake_data <- data.table(
data_id = rep(1:n_iter, each=n_batch*n_subsamp*levels_per_batch),
sigma = sigma,
sigma_b0 = sigma_b0,
sigma_b1 = sigma_b1,
beta_0 = beta_0,
beta_1 = beta_1,
treatment = rep(rep(trt_levels, each=n_subsamp), n_batch*levels_per_batch/2*n_iter),
batch = rep(rep(paste0("batch_", 1:(n_batch)), each=n_subsamp*levels_per_batch), n_iter),
beta_0_j = rep(rnorm(n_batch*n_iter, mean=0, sd=sigma_b0), each=n_subsamp*levels_per_batch),
beta_1_j = rep(rnorm(n_batch*n_iter, mean=0, sd=sigma_b1), each=n_subsamp*levels_per_batch),
x = rep(rep(c(0, 1), each=n_subsamp), n_batch*levels_per_batch/2*n_iter),
e = rnorm(n_subsamp*n_batch*levels_per_batch*n_iter, mean=0, sd=sigma)

)
fake_data[, y:= (beta_0 + beta_0_j) + (beta_1 + beta_1_j)*x + e]
setnames(fake_data, old=c("y", "batch"), new=c(y_label, batch_label))
fake_data[, treatment := factor(treatment)]
return(fake_data)

}

# depending on parameterization, can get many "failed to converge"
# and "isSingular" warnings
write_it <- FALSE

n_iter <- 5000
beta_1_i <- 0 # 0 = Type I, !0 = Power.
confound_i <- FALSE # FALSE is randomized complete block, TRUE is confounded
#case where there is only one treatment level per batch

n <- 3 # subsamples
k <- 8 # batches

# model_list <- c("lm_complete", "lm_mean", "lmm_slope", "lmm_inter")
model_list <- c("lm_complete", "lm_mean", "lmm_inter")

se <- matrix(NA, nrow=n_iter, ncol=length(model_list))
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colnames(se) <- model_list
prob <- matrix(NA, nrow=n_iter, ncol=length(model_list))
colnames(prob) <- model_list
ci <- matrix(NA, nrow=n_iter, ncol=length(model_list))
colnames(ci) <- model_list

fd_set <- fake_lmm_data(n_iter,
sigma = 1,
sigma_b0 = 1, # 1 for big, 0.1 for small
sigma_b1 = 0.1,
beta_0 = 10,
beta_1 = beta_1_i,
n_batch = k,
n_subsamp = n,
confound = confound_i)

for(iter in 1:n_iter){
fd <- fd_set[data_id==iter,]

m1 <- lm(y ~ treatment, data=fd)
m2 <- lm(y ~ treatment, data=fd[, .(y=mean(y)), by=.(treatment, block)])

if("lmm_slope" %in% length(model_list)){
m3 <- lmer(y ~ treatment + (treatment|block), data=fd)
m3.pairs <- summary(contrast(emmeans(m3, specs="treatment"), method="revpairwise"), infer=c(TRUE, TRUE))

}
m4 <- lmer(y ~ treatment + (1|block), data=fd)
m4.pairs <- summary(contrast(emmeans(m4, specs="treatment"), method="revpairwise"), infer=c(TRUE, TRUE))

se[iter, "lm_complete"] <- coef(summary(m1))["treatmenttr", "Std. Error"]
se[iter, "lm_mean"] <- coef(summary(m2))["treatmenttr", "Std. Error"]
if("lmm_slope" %in% length(model_list)){

se[iter, "lmm_slope"] <- coef(summary(m3))["treatmenttr", "Std. Error"]
}
se[iter, "lmm_inter"] <- coef(summary(m4))["treatmenttr", "Std. Error"]

prob[iter, "lm_complete"] <- coef(summary(m1))["treatmenttr", "Pr(>|t|)"]
prob[iter, "lm_mean"] <- coef(summary(m2))["treatmenttr", "Pr(>|t|)"]
if("lmm_slope" %in% length(model_list)){

prob[iter, "lmm_slope"] <- coef(summary(m3))["treatmenttr", "Pr(>|t|)"]
}
prob[iter, "lmm_inter"] <- coef(summary(m4))["treatmenttr", "Pr(>|t|)"]

ci[iter, "lm_complete"] <- confint(m1)["treatmenttr", 2] -
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confint(m1)["treatmenttr", 1]
ci[iter, "lm_mean"] <- confint(m2)["treatmenttr", 2] -
confint(m2)["treatmenttr", 1]

if("lmm_slope" %in% length(model_list)){
ci[iter, "lmm_slope"] <- m3.pairs[,"upper.CL"] - m3.pairs[,"lower.CL"]

}
ci[iter, "lmm_inter"] <- m4.pairs[,"upper.CL"] - m4.pairs[,"lower.CL"]
# m4.pairs.LT <- difflsmeans(m4, which="treatment", ddf="Kenward-Roger")
# m4.pairs.LT[, "upper"] - m4.pairs.LT[, "lower"]

}

if(write_it ==TRUE){
id <- paste(sample(c(letters, LETTERS), 4), collapse="")
fn <- paste0("lmm_fd_beta1=", beta_1_i,

"_confound=",confound_i,
"_id=", id,
".txt")

fp <- here("output", "chapter_lmm", fn)
write.table(fd_set, fp, sep="\t", quote=FALSE, row.names=FALSE)
fp <- here("output", "chapter_lmm", paste0("lmm_se-",id,".txt"))
write.table(se, fp, sep="\t", quote=FALSE, row.names=FALSE)
fp <- here("output", "chapter_lmm", paste0("lmm_prob-",id,".txt"))
write.table(prob, fp, sep="\t", quote=FALSE, row.names=FALSE)
fp <- here("output", "chapter_lmm", paste0("lmm_ci-",id,".txt"))
write.table(ci, fp, sep="\t", quote=FALSE, row.names=FALSE)

}

apply(se, 2, quantile, c(0.1, 0.5, 0.9))
apply(prob, 2, function(x) sum(x<0.05)/n_iter)
apply(ci, 2, quantile, c(0.1, 0.5, 0.9))
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